
Automatic Segmentation of Left Ventricle in 2D
Echocardiogram Using Deep Learning

Le Ngoc Tuan Khang
Supervisor: Dr. Tran Quoc Long

Co-Supervisor: Assoc. Prof. Dr. Le Sy Vinh

Introduction: Left Ventricle Segmentation left ventricle

echocardiogram
image

● Problem description: Automatic left

ventricle segmentation in 2-dimensional

echocardiogram images

● Application:

○ assessment of stroke volume,

ejection fraction, wall motion and

wall thickening

➝ heart condition

Introduction Method Experiment Conclusion

1/20

LV segmentation

Introduction: Approach
● Approach: deep learning
● Data: echocardiogram images taken by smartphones

→ application in mobile devices
● Difficulties: echocardiogram noise, environmental noise,

lighting variability, camera variability

Introduction Method Experiment Conclusion

2/20

Problem Formalization
● Input:

3D array I = (xij) ∈ NHxWx3

(RGB image)

● Goal: classify xij to LV (1) or

not LV (0)

● Output:

binary matrix M ∈ {0,1}HxW

(mask)

Introduction Method Experiment Conclusion

3/20

Related Work
● Traditional approach:

○ active contours
○ level sets
○ active shape/appearance models
○ Kalman filter

● Deep learning approach:
○ Smistad (2017): Unet CNN on pseudo dataset
○ Smistad (2018): Unet CNN for each heart view in echocardiogram
○ Arafati (2018): FCN-VGG architecture to segment all chambers.
⇒ promising results

Introduction Method Experiment ConclusionIntroduction Method Experiment Conclusion

4/20

Pipeline

Introduction Method Experiment Conclusion

Find best pipeline!
5/20

Preprocessing: Color space
Four color spaces were experimented:

● RGB: red, green, blue

● Grayscale: only intensity

● HSV: hue, saturation, value

○ H, S: color component

○ V: color brightness

● YCbCr:

○ Y: color brightness

○ Cb, Cr: color component

Introduction Method Experiment Conclusion

6/20

Preprocessing: Data Augmentation

Affine transformation Non-linear

● Data augmentation is a technique to create new data from available data.

● Use 6 transformations: 4 linear (affine) and 2 non-linear.

Introduction Method Experiment Conclusion

7/20

Loss function

combine losses

Introduction Method Experiment Conclusion

8/20

Loss function: Boundary-weighted loss
● Misclassifications usually happen in pixels near

object boundary.

→ more penalties on these misclassifications

● Pixel weight assignment:

○ outside LV = 0

○ boundary (max) → center (min)

● These weights can be generated automatically

using the distance transform (DT).

Introduction Method Experiment Conclusion

9/20

Architectures: Encoder-Decoder CNN

feature representation

● Architecture: encoder-decoder based on convolution neural network (CNN).
● Encoder: input space → feature space

Decoder: feature space → input space

Introduction Method Experiment Conclusion

10/20

Unet Linknet
11/20

Encoders: Blocks
Two designs of encoder block used in two architectures:
● MobileNetV2
● ResNet

Introduction Method Experiment Conclusion

12/20

Decoder: Blocks
Two designs of decoder block based on two upsampling methods:
● Nearest neighbors
● Transposed convolution

Introduction Method Experiment Conclusion

13/20

Postprocessing: Active models

Active contour model Active shape model

● Motivation: abnormal shape of segmentation result
● Two approaches:

○ Active contour model: fits a contour onto the object
○ Active shape model:

■ represents shapes of an object by a statistical model
■ uses the model to fit a shape onto an object instance in a new image

Introduction Method Experiment Conclusion

14/20

Experiment details
● Limited computational resources

➝ not all combinations of methods could be tested.
● Experiments were done method after method:

○ Color space ➝ Data augmentation ➝ Loss function ➝ Architecture ➝
Postprocessing.

● Details:
○ Data: pairs of (image, mask) annotated by an expert.

■ Total: 2418 (train: 1909, test: 509, ratio: 8:2)
○ Computational resource: Google Colab (Tesla K80 GPU)
○ Implementation:

■ CNN architecture: Tensorflow Keras
■ ACM: scikit-image
■ ASM: Pytorch

○ CNN optimization: RMSprop , learning rate = 0.001

Introduction Method Experiment Conclusion

15/20

Metric: Intersection-over-Union (IoU) score

P T

Introduction Method Experiment Conclusion

16/20

Result: Preprocessing

● Best = HSV (YCbCr follows closely).
● Hypothesis: they seperate

brightness component
→ model adapting to changes in
lighting condition

● Horizontal flipping improves
performance.

● Best = affine (linear) + grid
distortion (non-linear)

Mean IoU
Standard deviation IoU

Introduction Method Experiment Conclusion

17/20

Result: Loss function and Architecture

● Test non-weighted losses
→ best = BCE Jaccard

● Test weighted BCE Jaccard
→ improvement

● Fix architecture = Linknet,
encoder = MobileNetV2,
test decoder ∈ {Upsampling,
Transpose}

● Fix decoder = Upsampling,
test architecture ∈ {Linknet, Unet},
encoder ∈ {MobileNetV2, ResNet}

Introduction Method Experiment Conclusion

18/20

Result: Postprocessing

Tách mIoU thành
2 cột, một cột cho
các dự đoán tốt >
80%, một cột cho
các dự đoán tồi
(còn lại)

Introduction Method Experiment Conclusion

5%

● ACM: slight enhancement
● ASM: degradation due to high

variance in shapes

ASM ACM19/20

Conclusion
● Best pipeline:

○ Color space: HSV
○ Data augmentation: affine transformation and grid distortion
○ Loss function: weighted BCE Jaccard
○ Architecture: Linknet with MobileNetV2 encoder and Nearest

Neighbors Upsampling decoder
○ Postprocessing: active contour model

● Future work:
○ More data
○ Echocardiogram noise simulation
○ Advanced active shape model

Introduction Method Experiment Conclusion

20/20

Thanks for listening!

22

23

24

Ejection Fraction Calculation

25

Technique: Pseudo labeling

26

Postprocessing: Test-time augmentation

Combination
methods

27

Training history

28

Preprocessing: Color space

29

CNN Layers: Details
 Convolution, stride 1 Pooling

 Convolution, stride 2

30

Encoders: Bottleneck Residual Block

Depthwise convolution block Bottleneck residual block31

Decoder: Nearest Neighbors Upsampling

32

Decoder: Transposed Convolution

33

