Automatic Segmentation of Left Ventricle in 2D
Echocardiogram Using Deep Learning

— Le Ngoc Tuan Khang e

Supervisor: Dr. Tran Quoc Long
Co-Supervisor: Assoc. Prof. Dr. Le Sy Vinh

Introduction Method Experiment

Conclusion

Introduction: Left Ventricle Segmentation

1/20

Problem description: Automatic left
ventricle segmentation in 2-dimensional

echocardiogram images

echocardiogram
Application: image
o assessment of stroke volume,
ejection fraction, wall motion and
wall thickening LV segmentation

— heart condition

left ventricle

Introduction Method

Experiment

Conclusion

Introduction: Approach

2/20

Approach: deep learning

Data: echocardiogram images taken by smartphones

— application in mobile devices

Difficulties: echocardiogram noise, environmental noise,

lighting variability, camera variability

Introduction

Method

Experiment

Conclusion

3/20

Input:

3D array | = (x.) € NHWx

(RGB image)

I

Goal: classify X; to LV (1) or

not LV (0)
Output:

binary matrix M € {0,1}™W

(mask)

Output

‘ Introduction Method Experiment Conclusion

Related Work

e Traditional approach:
o active contours
o level sets
o active shape/appearance models
o Kalman filter
e Deep learning approach:
o Smistad (2017): Unet CNN on pseudo dataset
o Smistad (2018): Unet CNN for each heart view in echocardiogram
o Arafati (2018): FCN-VGG architecture to segment all chambers.
= promising results

.

Introduction

Pipeline

Method

Experiment

Conclusion

Data

Raw Train
Data

Find best pipeline!

Raw Test
Data

Preprocessing

Train
Augmentor

Preprocessing

Refined
Mask

Model Train Convolution
Data eural Netwo

Model Test | |Segmentation
Data Model

4

Shape

Refinement

Segmentation

Model

-

Introduction Method Experiment Conclusion

Preprocessing: Color space

Four color spaces were experimented:
e RGB: red, green, blue
e Grayscale: only intensity
e HSV: hue, saturation, value

o H,S: color component

o V:color brightness
e YCbCr:

o Y: color brightness

- o Cb, Cr: color component .=
6/20

‘ Introduction

Method

Experiment

Conclusion

Preprocessing: Data Augmentation

e Data augmentation is a technique to create new data from available data.

e Use 6 transformations: 4 linear (affine) and 2 non-linear.

Shifting

Affine transformation

Rotating

Horizontal Flipping

Non-linear

Grid Distortion Elastic Transform

Conclusion

Experiment

Introduction Method

Loss function

Binary cross—entropy loss = tlogp + (1 — t) log(1 — p) = { igé(ﬁ) 12 i (1)

|AN B TP
Jaccard loss =1 — —] -
|AU B TP+ FP+ FN
Groundtruth
2|ANB 2T P
Diceloss=1—|—|=1— |:| .
|A| + | B] 2TP + FP+ FN 5
= TP | FP
combine losses 3 L]
b
/ E - FN | PN

BCE Jaccard = a x Binary cross—entropy loss + Jaccard loss

=2

Introduction Method

Experiment

Conclusion

9/20

Misclassifications usually happen in pixels near

object boundary.

— more penalties on these misclassifications

Pixel weight assignment:
o outsideLV=0

o boundary (max) — center (min)

These weights can be generated automatically

using the distance transform (DT).

Image

DT image

Mask

Weight mask

‘ Introduction Method Experiment Conclusion

Architectures: Encoder-Decoder CNN

e Architecture: encoder-decoder based on convolution neural network (CNN).
e Encoder: input space — feature space
Decoder: feature space — input space

Encoder Decoder

Pooling
Convolution, stride > 1

.‘;’J]j i

Convolution, stride 1

10/20 feature representation

Upsampling

Wid x4 x B4 WIS x HM x B4 Wis x His x B4

T 2

WIS x
HI8 x
64

Concatenation

D82
’\Eéa\/

Witex | Concatenation y ﬁe x
Hi6x > '}

HI16 x
128 128

@
i o
(Em32

N
a

Concatenation

Linknet

‘ Introduction Method Experiment Conclusion

Encoders: Blocks

Two designs of encoder block used in two architectures: consion [i
. layer Layer
L M O b I | e N etvz Depthwise Pointwise
Convolution Convolution
e ResNet .
Norm:i:izaﬁon ReL¥o

. 1 T

| HI2 x Wi2 oy X:

HxWxC_*H: 3-—>|:|: — HxWxC—»W > ’ ,l\ e
MobileNetVa ResNet

-12/20

‘ Introduction Method Experiment Conclusion

Decoder: Blocks

Two designs of decoder block based on two upsampling methods:
e Nearest neighbors
e Transposed convolution

H/2 x Wi2
x2C

HxWxC Convolution
layer

Upsampling
layer
Transposed
Convolution

Batch

‘ Normalization
(il

HxWxC ReLU6

Y

=

1 24 Upsampling ? ? ? ? (_‘ﬁ
:> o sample

am

HI2 x Wi2
x2C

Y

%

Introduction Method Experiment Conclusion

e Motivation: abnormal shape of segmentation result
e Two approaches:
o Active contour model: fits a contour onto the object
o Active shape model:
m represents shapes of an object by a statistical model
m uses the model to fit a shape onto an object instance in a new image

Active contour model Active shape model

Original mask Distance Transform Initialization Iteration 2

I I

‘ Introduction Method

Experiment Conclusion

Experiment details

e Limited computational resources
— not all combinations of methods could be tested.
e Experiments were done method after method:

o Color space — Data augmentation — Loss function — Architecture —
Postprocessing.

e Details:

o Data: pairs of (image, mask) annotated by an expert.

m Total: 2418 (train: 1909, test: 509, ratio: 8:2)
o Computational resource: Google Colab (Tesla K80 GPU)
o Implementation:

m CNN architecture: Tensorflow Keras

m ACM: scikit-image

m ASM: Pytorch

o CNN optimization: RMSprop, learning rate = 0.001

16/20

Experiment

Conclusion

Z(p,,jj and t,jj)

Z(pij or t;;)

Introduction Method
Area of overlap ij
IoU(P,T) = . =
Area of uinon
|
IoU Score =
L

Intersection

Union

‘ Introduction Method Experiment Conclusion

Result: Preprocessing

Mean IoU

Standard deviation IoU
. y;
Color model | mloU | stdloU e Best=HSV (YCbCr follows closely).
RGB 0.8462 | 0.0916 e Hypothesis: they seperate
HSV 0.8501 | 0.0797 brightness component
YCbCr 0.8438 | 0.0831 — model adapting to changes in
Grayscale | 0.8466 | 0.0908

lighting condition

) . || Augmentation | mloU | stdloU ||
e Horizontal flipping improves :
Shift, Scale, Rotate 0.8648 | 0.0828
performance. Shift, Scale, Rotate, Hflip (Affine) | 0.8714 | 0.0711
e Best = affine (linear) + grid Grid Distortion 0.8587 | 0.0897
Affine, Grid Distortion 0.8744 | 0.0710

-1 7/20

‘ Introduction Method

Experiment

Conclusion

Result: Loss function and Architecture

l Loss function | mloU | stdloU ||
BCE 0.8651 | 0.0827
Dice 0.8737 | 0.0676
BCE Dice 0.8726 | 0.0736
Jaccard 0.8726 | 0.0637
BCE Jaccard 0.8744 | 0.0710
Weighted BCE Jaccard | 0.8805 | 0.0633

e Fix architecture = Linknet,
encoder = MobileNetV2,
test decoder € {Upsampling,
Transpose}
e Fix decoder = Upsampling,
test architecture € {Linknet, Unet},

e Test non-weighted losses
— best = BCE Jaccard

e Test weighted BCE Jaccard
— improvement

| Architecture | Encoder | Decoder | mloU | stdloU ||
Linknet MobileNetV2 | Upsampling | 0.8805 | 0.0633
Linknet MobileNetV2 | Transpose | 0.8753 | 0.0846
Linknet ResNet Upsampling | 0.8720 | 0.0685
Unet MobileNetV2 | Upsampling | 0.8737 | 0.0673
Unet ResNet Upsampling | 0.8712 | 0.0706

encoder € {MobileNetV2, ResNet}
=

Introduction

Method

Result: Postprocessing

Experiment Conclusion

Postprocessing mloU | stdloU
Active contour model | 0.8942 | 0.0589
Active shape model | 0.8517 | 0.0694

ACM: slight enhancement
ASM: degradation due to high
variance in shapes

‘ Introduction Method Experiment Conclusion

Conclusion

e Best pipeline:
o Color space: HSV
o Data augmentation: affine transformation and grid distortion
o Loss function: weighted BCE Jaccard
o Architecture: Linknet with MobileNetV2 encoder and Nearest
Neighbors Upsampling decoder
o Postprocessing: active contour model
e Future work:
o More data
o Echocardiogram noise simulation
o Advanced active shape model

-20/20

Thanks for listening!

23

24

The volume of left ventricle can be approximated using Simpson's rule:

A% L
V =0.85 A where A = 3% 30

".‘ nin

"' naT '

(a1 + azo + 4as + 2a3 + 4ag + 2a5 + - -+ + 2a39).

Then EF can be computed as: EF =1 —

Technique: Pseudo labeling

Labeled Data

/A'.
» Pseudo labeling is a semi-supervised learning technique, OO el Train -
= A\
(QO() ﬁ Model
2 =

i.e. a technique that also makes use of unlabeled data for QOO s Unlabeled Data
@

training along with labeled data. OOOO

Predict on

unlabeled data O Q O O
@000

e |t uses a trained model to get predictions on unlabeled data
Pseudo-labeled Data

instances, then add instances with pseudo-generated labels o
Retrzin the OO00O@®
of high confidence to the current training set, and retraina ~ medonboth 000
pseudo-labeled e 3
model on the new dataset. data QOO0

e Intuitively, this technique encourages model to make

confident predictions on unlabeled data.
26

Postprocessing: Test-time augmentation

Augmentation

» Get predictions on differently transformed

versions of an image, then combine the results.

e Hypothesis: This gives more opportunities to
make inference based on various views of a
same image.

e Cons: computation costs.

Method Pixels Result

:

Combination ‘ . D -
methOdS logical and |:| |:| I:‘
HEE B

majority voting . |:| . .

HpEE N

Training history

e HSV model suffers a heavy overfitting, as data which

it was trained on has low variability.

e HSV + Aug model shows a considerable improvement

from HSV model, indicating that data augmentation is

crucial for deep learning.

e HSV + Aug + WBCE]J gives a slightly better loU score on
the validation set than HSV + Aug, suggesting that

weighted loss has positive effect on the training.

0.7 1

Training Loss

Training loU

—: HSV
—— HSV + Aug
—— HSV + Aug + WBCEJ

0.6
0.90 4
0.5
0.85
0.4
0.80 §
0.3
0.75
0.2
0.70 4
o] —— HsV
—— HSV + Aug
0.65 4 —— HSV + Aug + WBCEJ
0.0 T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
a) b)
Validation Loss Validation loU
5 0.9
—— Hsv
—— HSV + Aug &6
—— HSV + Aug + WBCE) al
4
0.7
0.6
3
0.5
0.4
0.3
1
0.2 —— Hsv
—— HSV + Aug
0.1

—— HSV + Aug + WBCEJ

] 20 40 60 80 100

Q 28

Preprocessing: Color space

Four colors spaces were experimented:

e RGB (red, green, blue): is similar to how human visual system works.

e Grayscale: carry only the intensity information.

e HSV (hue, saturation, value): is designed to approximate the way humans
perceive and interpret color.
Hue ~ color, saturation ~ (hue # neural), value ~ lightness.

e YCbCr (Y - luminance; Cb, Cr - chroma components):

used in video compression, as human eyes are more sensitive to luminance

(i.e. the brightness of the color) than chroma components (can be reduced).

“Algray scal

agenta 255

blue b

\ all possible YCbCr values

black

B Y=255, Cb=Cr=128 v
Y,
255 green 120°
blue|(0,0,1 - ‘
001 o , gt
ite: __RGB color block ‘L
. ma
G

gray scale

CNN Layers: Details

input

Convolution, stride 1

w2 | 23

: LPTRE W P
convolution
operation 57 5 ‘]
\ SUM = 131 + 1¥2 + 2X3 + 3%4 + 4X5 +

4%6 + 5%7 + 5%8 + 6%9 = 104

s B |

3 -
’55

7 I I {

1 : : H
4 5 6
% 8 9

filter

v

[}

o

0

<«—— zero padding

Pooling
Max Pooling 6 8
(e | R
5 6 7 3 14 16
9 10 1 12 o || e
Average Pooling . X
13 14 15 16
54135
Convolution, stride 2
Convolution with
stride 2

10

12

13 14

15

16

30

Encoders: Bottleneck Residual Block

» Depthwise convolution block is used in MobileNetV1 to reduce the number of model paramterers.

» Bottleneck residual block in MobileNetV2 has two new components: the expansion-projection
mechanism and residual connection (which was introduced in ResNet architecture).

A #parameters = 32X 3 X3 X 16 = 4608 1x1 "Expansion” Layer
32x
B Batch Normalization
HxWx16
HxWx32 RelUs
Normal Convolution l
3x3 Depthwise Convolution
B 2x %
1x1x16 Batch Normalization
HxWx16 HXWx16 WK ReLUS
@ A
: 1x1 "Projection” Layer
16x W 16 HXW #parameters=16X3X3 +32X1X1x16 = 656
Batch Normalization
¢
Depthwise Convolution
: Depthwise Convolution

Depthwise convolution block Bottleneck residual block '

Decoder: Nearest Neighbors Upsampling

w
w

- - ¥] [¥]

e - (] (%]

2 Upsampling

Zero Padding

e
Bilinear
Interpolation
EARYEN E
2

2] -
 B-EH-B-B

3 35 4 2

4
Mirror Padding

Decoder: Transposed Convolution

—— Sum where output overlaps
Input give weights for filter
i :
14 10 12
1 2 3
4 5 6 23 16 18
2 3x3 filter
7 8 9 2 4 6
3 4
» 8 10 12
2x2 input
bt 14 16 18

4x4 output 33

