Automatic Segmentation of Left Ventricle in 2D Echocardiogram Using Deep Learning

Le Ngoc Tuan Khang

Supervisor: Dr. Tran Quoc Long Co-Supervisor: Assoc. Prof. Dr. Le Sy Vinh

Introduction

Introduction: Left Ventricle Segmentation

Method

- Problem description: Automatic left
 ventricle segmentation in 2-dimensional
 echocardiogram images
- Application:
 - assessment of stroke volume,
 ejection fraction, wall motion and
 wall thickening
 - \rightarrow heart condition

echocardiogram image

Experiment

LV segmentation

left ventricle

Introduction: Approach

- Approach: deep learning
- Data: echocardiogram images taken by smartphones
 → application in mobile devices
- **Difficulties**: echocardiogram noise, environmental noise, lighting variability, camera variability

Problem Formalization

- Input:
 - 3D array I = $(x_{ij}) \in N^{H \times W \times 3}$ (RGB image)
- Goal: classify x_{ij} to LV (1) or not LV (0)
- Output:

binary matrix $M \in \{0,1\}^{H \times W}$

(mask)

Introduction	Method	Experiment	Conclusion

Related Work

• Traditional approach:

- active contours
- \circ level sets
- active shape/appearance models
- Kalman filter

• Deep learning approach:

- Smistad (2017): Unet CNN on pseudo dataset
- Smistad (2018): Unet CNN for each heart view in echocardiogram
- Arafati (2018): FCN-VGG architecture to segment all chambers.
- ⇒ promising results

Conclusion

Preprocessing: Color space

Four color spaces were experimented:

- RGB: red, green, blue
- Grayscale: only intensity
- HSV: hue, saturation, value
 - H, S: color component
 - V: color brightness
- YCbCr:
 - Y: color brightness
 - Cb, Cr: color component

Preprocessing: Data Augmentation

- Data augmentation is a technique to create new data from available data.
- Use 6 transformations: 4 *linear* (affine) and 2 *non-linear*.

Introduction	Method	Experiment	Conclusion

Loss function

Binary cross-entropy loss =
$$t \log p + (1-t) \log(1-p) = \begin{cases} \log p & \text{if } t = 1 \\ \log(1-p) & \text{if } t = 0 \end{cases}$$

$$\mathbf{Jaccard\ loss} = \boxed{1 - \frac{|A \cap B|}{|A \cup B|}} = \boxed{1 - \frac{TP}{TP + FP + FN}}$$
$$\mathbf{Dice\ loss} = \boxed{1 - \frac{2|A \cap B|}{|A| + |B|}} = \boxed{1 - \frac{2TP}{2TP + FP + FN}}$$

 $\textbf{BCE Jaccard} = \alpha \times \text{Binary cross-entropy loss} + \text{Jaccard loss}$

combine losses

Conclusion

Loss function: Boundary-weighted loss

- Misclassifications usually happen in pixels near object boundary.
 - \rightarrow more penalties on these misclassifications
- Pixel weight assignment:
 - outside LV = 0
 - boundary (max) \rightarrow center (min)
- These weights can be generated automatically using the *distance transform* (DT).

10/20

Architectures: Encoder-Decoder CNN

- Architecture: encoder-decoder based on convolution neural network (CNN).
- Encoder: input space → feature space
 Decoder: feature space → input space

Introduction	Method	Experiment	Conclusion

Encoders: Blocks

Two designs of encoder block used in two architectures:

- MobileNetV2
- ResNet

Convolution

laver

Depthwise

Convolution

Pooling

Layer

Pointwise Convolution

ReLU6

Introduction	Method	Experiment	Conclusion

Decoder: Blocks

Two designs of decoder block based on two upsampling methods:

- Nearest neighbors
- Transposed convolution

Postprocessing: Active models

- **Motivation**: *abnormal shape* of segmentation result
- Two approaches:
 - Active contour model: fits a contour onto the object
 - Active shape model:
 - represents shapes of an object by a statistical model
 - uses the model to fit a shape onto an object instance in a new image

Active contour model

Experiment details

- Limited computational resources
 → not all combinations of methods could be tested.
- Experiments were done method after method:
 - Color space \rightarrow Data augmentation \rightarrow Loss function \rightarrow Architecture \rightarrow Postprocessing.
- Details:
 - **Data**: pairs of (image, mask) annotated by an expert.
 - Total: 2418 (*train*: 1909, *test*: 509, ratio: 8:2)
 - **Computational resource**: *Google Colab* (Tesla K80 GPU)
 - Implementation:
 - CNN architecture: *Tensorflow Keras*
 - ACM: *scikit-image*
 - ASM: *Pytorch*
 - **CNN optimization**: RMSprop, learning rate = 0.001

Conclusion

Ρ

Metric: Intersection-over-Union (IoU) score

$$IoU(P,T) = \frac{Area \text{ of overlap}}{Area \text{ of uinon}} = \frac{\sum_{ij} (p_{ij} \text{ and } t_{ij})}{\sum_{ij} (p_{ij} \text{ or } t_{ij})}$$

Union

Intersection

Result: Preprocessing

Standard deviation IoU

- Best = HSV (*YCbCr* follows closely).
- Hypothesis: they seperate brightness component
 → model adapting to changes in lighting condition

- *Horizontal flipping* improves performance.
- Best = affine (linear) + grid distortion (non-linear)

Augmentation	mIoU	stdIoU
Shift, Scale, Rotate	0.8648	0.0828
Shift, Scale, Rotate, Hflip (Affine)	0.8714	0.0711
Grid Distortion	0.8587	0.0897
Elastic Transform	0.8582	0.0956
Affine, Grid Distortion	0.8744	0.0710

Result: Loss function and Architecture

Loss function	mIoU	stdIoU
BCE	0.8651	0.0827
Dice	0.8737	0.0676
BCE Dice	0.8726	0.0736
Jaccard	0.8726	0.0637
BCE Jaccard	0.8744	0.0710
Weighted BCE Jaccard	0.8805	0.0633

- Fix architecture = Linknet, encoder = MobileNetV2, test decoder ∈ {Upsampling, Transpose}
- Fix decoder = Upsampling, test architecture ∈ {Linknet, Unet}, encoder ∈ {MobileNetV2, ResNet}

- Test non-weighted losses
 → best = BCE Jaccard
- Test weighted BCE Jaccard
 - \rightarrow improvement

Architecture	Encoder	Decoder	mIoU	stdIoU
Linknet	MobileNetV2	Upsampling	0.8805	0.0633
Linknet	MobileNetV2	Transpose	0.8753	0.0846
Linknet	ResNet	Upsampling	0.8720	0.0685
Unet	MobileNetV2	Upsampling	0.8737	0.0673
Unet	ResNet	Upsampling	0.8712	0.0706

Result: Postprocessing

Postprocessing	mIoU	stdIoU
Active contour model	0.8942	0.0589
Active shape model	0.8517	0.0694

ASM

- ACM: slight enhancement
- **ASM**: degradation due to high variance in shapes

Conclusion

• Best pipeline:

- Color space: HSV
- Data augmentation: affine transformation and grid distortion
- Loss function: weighted BCE Jaccard
- Architecture: Linknet with MobileNetV2 encoder and Nearest Neighbors Upsampling decoder
- *Postprocessing*: active contour model

• Future work:

- More data
- Echocardiogram noise simulation
- Advanced active shape model

Thanks for listening!

Ejection Fraction Calculation

The volume of left ventricle can be approximated using Simpson's rule:

$$V=0.85 \; rac{A^2}{L}, \; ext{where} \; A=rac{L}{3 imes 20}(a_1+a_{20}+4a_2+2a_3+4a_4+2a_5+\dots+2a_{19}).$$

Then EF can be computed as: $EF = 1 - rac{V_{min}}{V_{max}}$.

Technique: Pseudo labeling

- Pseudo labeling is a *semi-supervised learning* technique,
 i.e. a technique that also makes use of *unlabeled data* for
 training along with labeled data.
- It uses a *trained model* to get predictions on unlabeled data instances, then add instances with pseudo-generated labels of high confidence to the current training set, and retrain a model on the new dataset.
- Intuitively, this technique encourages model to make confident predictions on unlabeled data.

Postprocessing: Test-time augmentation

- Get predictions on differently transformed versions of an image, then combine the results.
- **Hypothesis**: This gives more opportunities to make inference based on various views of a same image.
- Cons: computation costs.

Training history

- *HSV* model suffers a heavy overfitting, as data which it was trained on has low variability.
- HSV + Aug model shows a considerable improvement from HSV model, indicating that data augmentation is crucial for deep learning.
- HSV + Aug + WBCEJ gives a slightly better IoU score on the validation set than HSV + Aug, suggesting that weighted loss has positive effect on the training.

Preprocessing: Color space

Four colors spaces were experimented:

- **RGB** (red, green, blue): is similar to how human visual system works.
- Grayscale: carry only the intensity information.
- HSV (hue, saturation, value): is designed to approximate the way humans perceive and interpret color.

Hue ~ color, saturation ~ (hue \neq neural), value ~ lightness.

• YCbCr (Y - luminance; Cb, Cr - chroma components):

used in video compression, as human eyes are more sensitive to luminance (i.e. the brightness of the color) than chroma components (can be reduced).

arav scale

Grayscale

Cr

CNN Layers: Details

Encoders: Bottleneck Residual Block

- *Depthwise convolution block* is used in MobileNetV1 to *reduce the number of model paramterers*. .
- Bottleneck residual block in **MobileNetV2** has two new components: the expansion-projection ٠ mechanism and residual connection (which was introduced in **ResNet** architecture).

Depthwise convolution block

Decoder: Nearest Neighbors Upsampling

Decoder: Transposed Convolution

