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Introduction: Left Ventricle Segmentation left ventricle

echocardiogram
image

● Problem description: Automatic left 

ventricle segmentation in 2-dimensional 

echocardiogram images

● Application:

○ assessment of stroke volume, 

ejection fraction, wall motion and 

wall thickening

➝ heart condition
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Introduction: Approach
● Approach: deep learning
● Data: echocardiogram images taken by smartphones

→ application in mobile devices
● Difficulties: echocardiogram noise, environmental noise, 

lighting variability, camera variability
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Problem Formalization
● Input: 

3D array I = (xij) ∈  NHxWx3 

(RGB image)

● Goal: classify xij to LV (1) or 

not LV (0)

● Output: 

binary matrix M ∈ {0,1}HxW  

(mask)
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Related Work
● Traditional approach: 

○ active contours
○ level sets
○ active shape/appearance models
○ Kalman filter

● Deep learning approach:
○ Smistad (2017):  Unet CNN on pseudo dataset
○ Smistad (2018): Unet CNN for each heart view in echocardiogram
○ Arafati (2018): FCN-VGG architecture to segment all chambers.
⇒ promising results
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Pipeline
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Find best pipeline!
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Preprocessing: Color space
Four color spaces were experimented:

● RGB: red, green, blue

● Grayscale: only intensity

● HSV: hue, saturation, value

○ H, S: color component

○ V: color brightness

● YCbCr: 

○ Y: color brightness 

○ Cb, Cr: color component
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Preprocessing: Data Augmentation

Affine transformation Non-linear

● Data augmentation is a technique to create new data from available data.

● Use 6 transformations: 4 linear (affine) and 2 non-linear.
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Loss function

combine losses
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Loss function: Boundary-weighted loss
● Misclassifications usually happen in pixels near 

object boundary. 

→ more penalties on these misclassifications 

● Pixel weight assignment: 

○ outside LV = 0

○ boundary (max) → center (min)

● These weights can be generated automatically 

using the distance transform (DT).
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Architectures: Encoder-Decoder CNN

feature representation

● Architecture: encoder-decoder based on convolution neural network (CNN).
● Encoder: input space → feature space

Decoder: feature space → input space
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Unet Linknet
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Encoders: Blocks
Two designs of encoder block used in two architectures:
● MobileNetV2
● ResNet
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Decoder: Blocks
Two designs of decoder block based on two upsampling methods:
● Nearest neighbors
● Transposed convolution
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Postprocessing: Active models

Active contour model Active shape  model

● Motivation: abnormal shape of segmentation result 
● Two approaches:

○ Active contour model: fits a contour onto the object
○ Active shape model: 

■ represents shapes of an object by a statistical model
■ uses the model to fit a shape onto an object instance in a new image
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Experiment details
● Limited computational resources

➝ not all combinations of methods could be tested.
● Experiments were done method after method:

○ Color space ➝ Data augmentation ➝ Loss function ➝ Architecture ➝ 
Postprocessing.

● Details:
○ Data: pairs of (image, mask) annotated by an expert.

■ Total: 2418 (train: 1909, test: 509, ratio: 8:2)
○ Computational resource: Google Colab (Tesla K80 GPU)
○ Implementation:

■ CNN architecture: Tensorflow Keras
■ ACM: scikit-image
■ ASM: Pytorch

○ CNN optimization: RMSprop , learning rate = 0.001
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Metric: Intersection-over-Union (IoU) score

P T
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Result: Preprocessing

● Best = HSV (YCbCr follows closely).
● Hypothesis: they seperate 

brightness component
→ model adapting to changes in 
lighting condition

● Horizontal flipping improves 
performance.

● Best = affine (linear) + grid 
distortion (non-linear)

Mean IoU
Standard deviation IoU
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Result: Loss function and Architecture

● Test non-weighted losses 
→ best = BCE Jaccard

● Test weighted BCE Jaccard 
→ improvement  

● Fix architecture = Linknet, 
encoder = MobileNetV2, 
test decoder ∈ {Upsampling, 
Transpose}

● Fix decoder = Upsampling, 
test architecture ∈ {Linknet, Unet}, 
encoder ∈ {MobileNetV2, ResNet} 
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Result: Postprocessing

Tách mIoU thành 
2 cột, một cột cho 
các dự đoán tốt > 
80%, một cột cho 
các dự đoán tồi 
(còn lại)
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● ACM: slight enhancement
● ASM: degradation due to high 

variance in shapes
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Conclusion
● Best pipeline:

○ Color space: HSV
○ Data augmentation: affine transformation and grid distortion
○ Loss function: weighted BCE Jaccard
○ Architecture: Linknet with MobileNetV2 encoder and Nearest 

Neighbors Upsampling decoder
○ Postprocessing: active contour model

● Future work:
○ More data
○ Echocardiogram noise simulation
○ Advanced active shape model
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Thanks for listening!
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Ejection Fraction Calculation
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Technique: Pseudo labeling
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Postprocessing: Test-time augmentation

Combination
methods 

27



Training history
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Preprocessing: Color space
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CNN Layers: Details
   Convolution, stride 1       Pooling

  Convolution, stride 2
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Encoders: Bottleneck Residual Block

Depthwise convolution block Bottleneck residual block31



Decoder:  Nearest Neighbors Upsampling 
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Decoder: Transposed Convolution
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