
VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Le Ngoc Tuan Khang

AUTOMATIC SEGMENTATION OF LEFT

VENTRICLE IN 2D ECHOCARDIOGRAM USING

DEEP LEARNING

Major: Computer Science

HANOI - 2019

VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Le Ngoc Tuan Khang

AUTOMATIC SEGMENTATION OF LEFT

VENTRICLE IN 2D ECHOCARDIOGRAM USING

DEEP LEARNING

Major: Computer Science

 Supervisor: Dr. Tran Quoc Long

 Co-Supervisor: Assoc. Prof. Dr. Le Sy Vinh

HÀ NỘI - 2019

AUTHORSHIP

“I hereby declare that the work contained in this thesis is of my own
and has not been previously submitted for a degree or diploma at this
or any other higher education institution. To the best of my knowledge
and belief, the thesis contains no materials previously published or writ-
ten by another person except where due reference or acknowledgement
is made.”

Signature:

i

SUPERVISOR’S APPROVAL

“I hereby approve that the thesis in its current form is ready for commit-
tee examination as a requirement for the Bachelor of Computer Science
degree at the University of Engineering and Technology.”

Signature:

ii

ACKNOWLEDGMENT

First and foremost, I would like to express my genuine gratitude to my

supervisor, Dr. Tran Quoc Long. Without his technical advice and ded-

icated guidance throughout the process, this thesis would have never

been accomplished. I am also grateful to my co-supervisor, Assoc. Prof.

Dr. Le Sy Vinh, for his helpful insight on various obstacles arisen along

the way.

Next, I would like to thank all lecturers at the Faculty of Informa-

tion Technology, VNU University of Engineering and Technology, for

their assistance and valuable lessons over my student years at the uni-

versity.

Last but by no means least, I take this opportunity to thank my
family and my friends, for their emotional support that have encour-
aged me at difficult times in life.

iii

ABSTRACT

Ejection fraction (EF) is a heart measurement of how much blood the left ventri-

cle (LV) pumps out with each contraction, which can help doctors diagnose and

track heart failure. Calculating this value requires the segmentation of LV in two-

dimensional (2D) echocardiography, which is usually done manually by medical ex-

perts or specialized devices. While there are paid software available in large hospi-

tals that can perform this segmentation automatically, many local faculties do not

have access to such utilities, resulting in the requirement of manual segmentation,

which is professional-dependent and biased. This raises the need of a mobile appli-

cation that can support local doctors to segment LV and calculate EF, and in turn of a

segmentation method that is able to work on noisy images taken from smartphones

with a practical speed and an acceptable accuracy. This is a new problem, as LV seg-

mentation methods proposed in the literature usually work on original images taken

directly from 2D echocardiogram output, thus less subject to environmental factors

such as lighting conditions and noises. With the rise of deep learning in the field

computer vision in general and medical image processing in particular, which has

shown exceptional performances on key problems of the field and far surpassed tra-

ditional machine learning and image processing methods, it is a natural question to

ask whether deep learning approach is suitable for the proposed problem. In this the-

sis, some deep learning architectures on the segmentation task will be experimented,

along with some other processing techniques and practical strategies, on a data set of

LV images from 2D echo taken by mobile devices and annotated by experts. Results

showed that a deep learning model with carefully chosen architectures and suitable

processing methods can give a prediction of LV region on a noisy image in a reason-

able time with high accuracy, which is feasible for mobile applications.

Keywords: left ventricle segmentation, deep learning, ejection fraction, Unet, Linknet,

MobileNetV2, ResNet, active shape model, data augmentation, pseudo-labeling.

iv

Contents

List of Figures . v

List of Tables . v

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.3 Contributions . 5

2 Background 6

2.1 Problem Formalization . 6

2.2 Segmentation . 6

2.3 Deep Learning . 7

2.3.1 Artificial neural network . 7

2.3.2 Convolutional neural network . 9

2.4 Deep CNN Architectures for Segmentation . 11

2.4.1 Unet . 11

2.4.2 Linknet . 12

2.5 Encoders and Decoders . 12

v

2.5.1 Encoders . 12

2.5.2 Decoders . 16

2.6 Loss function . 19

2.6.1 Binary cross-entropy . 19

2.6.2 Jaccard distance . 19

2.6.3 Dice coefficient . 20

2.6.4 Combined losses . 21

2.7 Active contour model . 21

3 Methods 23

3.1 Overall pipeline . 23

3.2 Preprocessing . 25

3.2.1 Color spaces . 25

3.2.2 Data augmentation . 25

3.3 Architectures . 26

3.3.1 Segmentation Architectures . 26

3.3.2 Encoder Backbones . 26

3.3.3 Decoder . 28

3.4 Boundary-weighted loss function . 28

3.5 Training and Inference Strategy . 28

3.5.1 Pseudo-labeling . 28

3.5.2 Test-time augmentation . 31

3.6 Post processing . 31

3.6.1 Active contour model . 32

vi

3.6.2 Active shape model . 32

4 Experiments 36

4.1 Data . 36

4.2 Experimental Settings . 36

4.2.1 Data Augmentation . 36

4.2.2 Architectures . 37

4.2.3 Training . 38

4.2.4 Postprocessing . 38

4.3 Metric . 38

4.4 Results and Analysis . 39

4.4.1 Color spaces . 39

4.4.2 Data augmentation . 39

4.4.3 Loss function . 40

4.4.4 Architectures . 40

4.4.5 Strategies . 41

4.4.6 Postprocessing . 44

4.4.7 Inference time . 44

4.4.8 Ejection Fraction . 45

5 Conclusions 48

A Statistical Shape Analysis 50

A.1 Shapes and Landmarks . 50

A.2 Shape Alignment - Procrustes Analysis . 50

vii

A.3 Shape Modeling - Principal Component Analysis 51

B Ejection Fraction Calculation using Simpson’s Rule 52

viii

List of Figures

1.1 Three typical views obtained during a routine TTE 2

1.2 Visualization of the heart from A4C and A2C view 3

1.3 Biplane Simpson method . 4

2.1 Semantic Segmentation and Instance Segmentation 7

2.2 A brain analogy of Artificial Neural Network . 8

2.3 ANN in detail. 8

2.4 How the convolution operation works. 10

2.5 Two types of Pooling layers . 10

2.6 Segmentation Architectures . 11

2.7 ResNet motivation . 13

2.8 Residual Connection . 14

2.9 Depthwise Convolution . 14

2.10 Encoders in MobileNet architectures. 15

2.11 Visualization of some nearest neighbors upsampling methods 17

2.12 Transposed Convolution . 18

3.1 Pipeline. 24

3.2 Affine Transformation . 25

3.3 Grid Distortion and Elastic Transform . 26

3.4 Two experiment encoders . 27

3.5 Two experiment decoders . 29

3.6 Procedure of making a weight mask . 30

3.7 Pseudo Labeling . 30

3.8 Test-time Augmentation . 31

3.9 Some methods to combine the TTA results . 32

3.10 An example of the procedure for Active Shape Model 33

ix

3.11 Active Shape Model Iterations . 35

4.1 Dataset . 37

4.2 IoU Visualization. 38

4.3 Training histories of best models . 42

4.4 Three best models comparison . 42

4.5 Some good predictions of the best model. 43

4.6 Some bad predictions of the best model. 44

4.7 Some results of active contour model and active shape model. 45

4.8 EF Visualization . 46

B.1 Simpson rule for calculating LV volume. 52

x

List of Tables

1.1 LVEF ranges by gender . 3

2.1 TP, FP, FN in a confusion matrix. 20

4.1 Experiment results of color spaces. 39

4.2 Experiment results of augmentation methods. 40

4.3 Experiment results of loss functions. 40

4.4 Experiment results of architectures. 40

4.5 Experiment results of some strategies. 43

4.6 Experiment results of postprocessing techniques. 44

4.7 Experiment results of EF calculation. 47

4.8 Statistics of EF calculation (mean ± std). 47

xi

Abbreviations

ANN Artificial Neural Network

CNN Convolution Neural Network

LV Left Ventricle

A2C Apical Two Chamber

A3C Apical Three Chamber

A4C Apical Four Chamber

EF Ejection Fraction

2D Two-dimensional

DL Deep Learning

ReLU Rectified Linear Unit

ACM Active Contour Model

ASM Active Shape Model

DT Distance Transform

TTA Test-time Augmentation

GD Gradient Descent

IoU Intersection-over-Union

BCE Binary Cross-entropy

PCA Principal component analysis

EC Encoder

DC Decoder

xii

Chapter 1

Introduction

1.1 Motivation

Segmentation of the left ventricle (LV) in two-dimensional (2D) echocardiography
is an essential step for calculating Ejection Fraction (EF), a measurement that as-
sists doctors in diagnosing heart problems. In practice, this segmentation task is
performed manually by medical experts or automatically with the help of expensive
specialized devices that are only available in large hospitals. This raises a need for
an alternative method that is cheap, automatic and reliable to be used in local clin-
ics. With considerable developments in the field of deep learning, which has shown
exceptional performances on fundamental computer vision problems and far sur-
passed traditional machine learning and image processing methods, this thesis aims
to explore how deep learning approaches can be applied to this task. This section will
introduce some basic concepts to understand the medical aspect of the problem.

Echocardiography Ultrasonography is a technique that makes use of high-frequency
sound waves bouncing off internal structures to create a moving image 1. The ultra-
sonography of the heart is called echocardiography (also known as echocardiogram
or echo). It is a test that takes pictures of the heart’s components such as chambers,
walls, valves and attachments such as the blood vessels (arteries, aorta, veins) 2. As a
noninvasive, painless and widely available method that provides images of high qual-
ity with a reasonable price, it is a popular choice for diagnosing heart problems like
high blood pressure, leaky heart valves, heart failure or even blood clots and tumors
3.

2D echocardiography Main types of echocardiography are transthoracic echocar-
diography, stress echocardiography, transesophageal echocardiography, and three- di-

1https://www.msdmanuals.com/home/heart-and-blood-vessel-disorders/diagnosis-of-heart-
and-blood-vessel-disorders/echocardiography-and-other-ultrasound-procedures

2https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-
attack/echocardiogram-echo

3https://www.nhlbi.nih.gov/health-topics/echocardiography

1

mensional echocardiography. The subject of this thesis is two-dimensional (2D) im-
ages in transthoracic echocardiography, the most common type of echocardiogram
test. This test involves the use of a device called a transducer which is placed on the
chest or abdomen to get various views of the heart. Three typical views will be ex-
perimented: apical four chamber (A4C), apical three chamber (A3C) and apical two
chamber (A2C). Those views are useful to when it comes to the quantitation of left
ventricular volumes, ejection fraction, four segmental wall motions, and wall thick-
ness [1].

Figure 1.1: Three typical views obtained during a routine TTE. From left to right: Apical two chamber
(A2C), Apical three chamber (A3C) and Apical four chamber (A4C).

Left Ventricle The left ventricle (LV) is a large chamber toward the bottom of the
heart, located below the left atrium and separated from it by the mitral valve (see
figure 1.2 for a positional visualization; note that these images are upside-down views
of the heart). When the heart shrinks, blood moves back into the left atrium, and
then through the mitral valve and later enters the left ventricle. The left ventricle
is the thickest of the heart’s chambers and holds responsibility for pumping blood
enriched with oxygen to tissues all over the body 4.

An echocardiogram can be used to assess left ventricular function measure-
ments, quantifying the efficiency of the left ventricle to pump blood through the body
in each heartbeat. One of the parameters for quantification of left ventricular func-
tion (LVF) which can be obtained from 2D (transthoracic) echocardiography is Ejec-
tion Fraction. Left Ventricular Ejection Fraction (LVEF) is the central measure of left
ventricular systolic function. If the volumes of blood left in a ventricle at the end of
diastole and of systole are the end-diastolic volume (EDV) and the end-systolic vol-
ume (ESV) respectively, and the difference between these two is stroke volume, then
EF is the fraction of stroke volume in relation to the end-diastolic volume:

E F (%) =
E DV −E SV

E DV
×100 (1.1)

Ranges for assessing two-dimensional echocardiography obtained LVEF as per
American Society of Echocardiography and the European Association of Cardiovas-
cular Imaging are given in Table 1.1.

4https://www.healthline.com/human-body-maps/left-ventricle

2

Figure 1.2: Visualization of the heart from A4C (right) and A2C (left) view.

``````````````̀Gender
Range (%) Severely

abnormal
Moderately
abnormal

Mildly
abnormal Normal

Male <30 30-40 41 - 51 52-72
Female <30 30-40 41 - 53 54-74

Table 1.1: LVEF ranges by gender.

Segmentation of the Left Ventricle in 2D Echocardiogram To calculate the volume
of the left ventricle from a 2D echocardiogram, the first step is detecting the LV re-
gion. This detection process, where the boundary of LV is drawn, is called left ventri-
cle segmentation. In practice, the expert will run a result video frame by frame from
an echocardiogram and choose the frame that corresponds to the systolic and dias-
tolic moment. Then there will be an automatic software that calculates the EF by
some methods (such as the modified Simpson method). This is a time-consuming
and expertise-required process. There are many methods that aim to automatize this
process, which includes traditional and modern deep learning approaches, but they
do not tackles the problem this thesis is facing. To the best of my knowledge, this is
the first intense experimental conduction that solves the described problem.

1.2 Related Work

Automatic (and semi-automatic) segmentation of LV is a well-studied problem in the
literature of medical image analysis. This section will briefly discuss two main ap-
proaches: image processing-based and deep learning-based.

3



Figure 1.3: Biplane Simpson method to calculate LVEF.

Image Processing Approaches

Before the dawn of deep learning, there are many proposed methods for 2D left ven-
tricle segmentation, such as active contours, level sets, active shape models and Kalman
filter. A thorough review of methods belong to this approach can be referred to Noble
and Boukerroui’s survey [5].

Deep Learning Approaches

Recent research using deep convolutional neural networks for segmentation of left
ventricles in 2D echocardiogram have shown very promising results. Though deep
learning is a powerful framework, to make a deep learning model efficiently working
is a challenging task, especially in medical image analysis, as this approach requires
a large amount of (usually annotated) data. For the LV segmentation problem, this
means that experts have to draw the LV border in potentially thousands of images,
which is time-consuming and extremely tedious. Smistad et al. [32] adopted an ap-
proach that tackled the data-hungry problem of deep learning models [23], where an
Unet-inspired convolution neural network (CNN) was pretrained on the "pseudo"
data generated from other segmentation methods such as Kalman filter. From ex-
periments, they observed that CNN is able to reach comparable accuracy to that of
the automatic method, by only training with artificially generated data. In another
research, Smistad et al. also proposed a framework that uses a neural network to
identify and separate eight cardiac views and another segmentation network adopted
from Unet architecture [15] that was trained to classify pixels in 2D echocardiogram
images into four categories (background, left ventricle, myocardium and left atrium)
for each view. Arafati et al. [24] fine-tuned a pretrained FCN-VGG Net [14] on a aug-
mented dataset to segment all four chambers of the heart and evaluated the model
using multiple evaluation metrics including Dice similarity coefficient and Hausdorff

4



distance, showing that automatic cardiac segmentation in noisy 2D echocardiograms
can be solved as a semantic segmentation problem using latest deep-learning algo-
rithms.

1.3 Contributions

This thesis investigates how a deep learning (DL) approach can be applied for seg-
menting LV regions in a relatively new data set of noisy images taken from 2D echocar-
diograms. Some DL architectures will be examined along with some processing tech-
niques and practical strategies to choose the best pipeline for the given data set. Ex-
periments revealed that a deep learning model with carefully chosen architectures
and proper processing methods can produce a segmentation of LV region on a noisy
image in a reasonable time with high accuracy, that makes it possible for mobile ap-
plications.

5



Chapter 2

Background

2.1 Problem Formalization

The problem of left ventricle segmentation can be formally defined as follows: Given
an image represented by a 3-channel matrix I = (xi j ) ∈NH×W ×3 (where xi j = (ri j , g i j , bi j )
are values of three color channels: red, green, blue), the goal is classifying each pixel
xi j into one of two classes: LV (i.e. the pixel is in the left ventricular region) or not LV.
If yi j = 1 then xi j belongs to LV and yi j = 0 otherwise, the prediction mask is given by
the 1-channel matrix P = (yi j ).

The following sections of this chapter will introduce some fundamental back-
ground of relevant knowledge to provide readers with a more thorough understand-
ing of proposed methods.

2.2 Segmentation

Introduction Image segmentation is the process of subdividing an image into its
constituent regions or segments (sets of pixels) of similar functional or characteristic
properties [6]. The aim of this process is to change the way an image is represented,
making it more meaningful and easier to examine. Semantic segmentation, where
each pixel within the image is classified to an object category (e.g. background, per-
son, cat, dog, . . . ), is one of the fundamental problems in the area of computer vision.
Another type of segmentation is instance segmentation (see figure 2.1 [19]), where
each pixel is identified with an object instance (e.g. two different people are differ-
ent instances, though they both belong to category "person"), which requires more
fine-grained inferences compared to coarse-grained results of semantic segmenta-
tion. Accurate and efficient segmentation mechanisms are needed in fundamental
phases of many applications such as autonomous driving, video surveillance, and
even medical imaging (locating tumors, providing organic measurements or virtual
surgery stimulation). As images of interest contain only a single object (LV) within a
background, we simply consider the current problem a binary semantic segmenta-

6



Figure 2.1: Semantic Segmentation and Instance Segmentation

tion task.

Medical Image Segmentation Medical images play a vital role in medical diagno-
sis and treatment. Over the years, medical image processing has contributed a lot
in medical applications; for example, methods of image segmentation, image regis-
tration, and image-guided surgery are widely used in surgical procedures [9]. The
segmentation of tissue classes, organs, pathologies, or other biologically relevant
structures in medical images allows quantitative analysis of clinical parameters re-
lated to volume and shape (for example, in cardiac or brain analysis [22]) or simula-
tions based on the extracted boundary information. Some other medical problems
demanding segmentation can be listed such as surgical planning, tumor detection,
brain development study, etc. [9]. Challenges in medical image segmentation usually
come from low contrast, noises, and other imaging ambiguities. With the growth of
deep learning, especially in the realm of computer vision, many segmentation prob-
lems in the medical field can be tackled using deep architectures, usually Convo-
lutional Neural Networks (CNN), which are exceeding other approaches by a huge
margin in terms of precision and sometimes even efficiency.

2.3 Deep Learning

2.3.1 Artificial neural network

An artificial neural network (ANN) composes of connected units or nodes called ar-
tificial neurons that are connected to each other in some specified way. The field
of neural networks has originally been motivated by the goal of modeling biologi-
cal neural systems (depicted in figure 2.2 1), but has since diverged and become a
matter of engineering and obtaining good results in machine learning tasks 2. There
are various types of neural networks, from the simple feedforward neural network to
more complex recurrent neural network which models temporal dynamic behavior
or convolutional neural network used to analyze visual imagery.

A basic neural network comprises layers, which in turn comprises neurons (fig-
ure 2.3a). Each neuron in a layer will be connected to all neurons of the former layer

1Image taken from http://cs231n.github.io/neural-networks-1/
2http://cs231n.github.io/neural-networks-1/

7



Figure 2.2: A brain analogy of Artificial Neural Network

(a) A simple ANN (b) Connection between neurons

Figure 2.3: ANN in detail.

by a linear combination operation:

xi ,1 =wi−1,1 xi−1,1+wi−1,2 xi−1,2+ · · ·+wi−1,n xi−1,n + bi−1 (2.1)

where xi ,1 is the first neuron of i -th layer, terms wi−1, j , for j = 1..n are called weights
and bi−1 is the bias term. The latter two are trainable parameters of the network,
which can be updated to make the network perform better in mapping input to out-
put.

After each neuron in hidden layers, there is an activation function applied to the
value of that neuron. As the combination of weights and neurons from the previous
layer is just a linear operation, the activation can bring a non-linear mapping to the
network, therefore makes the network more complicated and consequently be able
to learn complicated structures from the data. Some popular activation functions
are:

• Sigmoid function: f (x ) = 1
1+e −x , which is a nonlinear operation mapping a real

value to another real value between (0, 1).

• ReLU (Rectified Linear Unit): f (x ) = max(x , 0), which is also a nonlinear map-
ping. Because ReLU is computationally inexpensive and is able to make the
network sparse (as negative values are mapped to 0), it is widely used in deep
networks.

Note that there exist linear activation functions, such as the identity mapping
f (x ) = x , but using this type of activations inside a neural network is pointless, as a

8



series of layers with linear activations is simply equivalent to a linear combination,
which can be represented by a single layer.

Deep learning usually refers to the usage of deep neural networks (which is ar-
tificial neural networks with multiple layers between the input and output layers).
It allows models to learn representations of data with multiple levels of abstraction
(this is one reason why deep learning is powerful when it comes to analysis images,
which has a hierarchical structure, e.g. faces are made up of eyes, which are made up
of edges, etc.).

2.3.2 Convolutional neural network

A convolutional neural network (CNN, or ConvNet) is a class of deep neural networks,
where each layer is a three-dimensional representation of neurons, and each neuron
from the current layer has a spatial connection to a region of neurons in the pre-
vious layer. CNN is very similar to ordinary Neural Networks as they compose of
neurons that have learnable weights and biases; the difference is that CNN architec-
tures explicitly assume that the inputs are images, which allows us to encode certain
properties into the architecture, thus help the forward function more efficient to im-
plement and greatly reduce the number of parameters in the network. Each layer of a
convolutional neural network has neurons arranged in 3 dimensions: width, height,
depth. There are three main types of layers, they are Convolutional Layer, Pooling
Layer, and Fully-Connected Layer. For simplicity, the following part will describe the
mechanism of those layers with the input of depth 1, but it can easily generalized into
any depth.

• Convolutional Layer This layer’s mechanism is based on the convolution op-
eration in the signal processing, which is defined over two one-dimensional dis-
crete functions f [x ] and g [x ] as:

( f ∗ g )[x ] =
∞
∑

m=−∞
f [m ]g [x −m ] (2.2)

or in 2D case:

( f ∗ g )[x , y ] =
∞
∑

m=−∞

∞
∑

n=−∞
f [x , y ]g [x −m , y −n ] (2.3)

Figure 2.4 shows a visualization of how a convolution operation works on a 2D
image.

• Pooling Layer This layer’s function is to progressively reduce the spatial size
of the representation to reduce the number of parameters and computation in
the network, and hence to also control overfitting. Some widely used pooling
layers are:

– Max Pooling: As figure 2.5 implies, the max pooling operating over a region
will return the max element of that region. For example, a filter over the

9



Figure 2.4: How the convolution operation works.

Figure 2.5: Two types of Pooling layers

region of (1, 2, 5, 6)will have the output being 6=max(1, 2, 5, 6).

– Average Pooling This layer functions similarly to Max Pooling layer apart
from the max operator which is replaced by the average operator. For in-
stance, 3.5= 1+3+5+6

4 is the output of filtering through (1, 2, 5, 6).

As we can infer from mechanisms described of two pooling layers, the input
going through this layer will only be reduced in height and width size when
keeping the same the number of channels.

• Fully-Connected Layers Those layers are similar to hidden layers in basic
ANN architecture, where a neurons is connected to all the neurons in the previ-
ous layer.

10



(a) Unet (b) Linknet

Figure 2.6: Segmentation Architectures

2.4 Deep CNN Architectures for Segmentation

2.4.1 Unet

Unet [15] employs an encoder-decoder architecture, in which there are blocks of lay-
ers that encode the input in different feature space, from dense (which is related to
high resolution and high-level feature) to coarse (which is related to low resolution
and low-level feature). Letter "U" in Unet comes from the “U” shape given by an en-
coding path (“contracting”) paired with a decoding path (“expanding”) in the archi-
tecture. There are skip-connections that concatenate feature maps from each level
of the contracting path over with feature maps precedeing the analogous level in the
expanding path, serving as a mean for information passing which supports decoder
path in the upsampling process and capturing fine features. They also allow the net-
work to examine features at various scales and complexities to make its decision. In
the paper, Unet consisting of 4 main encoders and 4 corresponding main decoders,
each downsamples and upsamples input by a factor of 2, while simultaneously dou-
bles and halves the number of channels, respectively. The high-level architecture of
Unet is depicted in figure 2.6a.

11



2.4.2 Linknet

Also based on the encoder-decoder architecture similar to Unet, the difference be-
tween Linknet and Unet is that it reduces the number of parameters by replacing
concatenation with adding operation. Similar to Unet, the input of each encoder
layer is bypassed to the output of its corresponding decoder. This will help to recover
lost spatial information that can be used by the decoder and its upsampling opera-
tions. In addition, since the decoder is sharing knowledge learned by the encoder at
every layer, the decoder can use fewer parameters [26]. For a visualization of Linknet
architecture, see figure 2.6b.

2.5 Encoders and Decoders

The need for encoders and decoders arise from the importance of representations in
machine learning (i.e. how features are represented makes a substantial difference
in the performance of our learning algorithms). While in the past most features are
hand-crafted (which also called feature engineering, where designer explicitly chose
features and their representation), the present witnesses the rise of feature learning
methods, where an algorithm is able to learn the feature representation itself. Deep
learning uses a deep neural network to achieve this learning task. Specifically, the
first few layers of a neural network extract features from the data, or in other words
map raw inputs to useful feature representations; and the next few layers combine
these features to produce the desired output.

Some network architectures are specially designed to leverage this ability of
neural networks to learn efficient representations. One of those is encoder-decoder
network, where an encoder network is used to map raw inputs to feature representa-
tions, and a decoder network will receive this feature representation as input, learn
how to map this input back to the original representation, thus further understand
the meaning of the feature mapping. Unet and Linknet introduced above are two
examples of this architecture type.

This section presents some encoder and decoder blocks that are in active re-
search in academia and also widely used in practice.

2.5.1 Encoders

A simple encoder

A simple encoder that maps an input onto a lower-dimensional feature space can be
a achieve with a normal convolution layer with stride greater than 1. While simple
as it sounds, this naive approach has many problems such as being hard to effec-
tively design, difficult to optimize (which is the problem that ResNet solves) and the
number of parameters is scaled considerably with the depth of the networks (which
is tackled by depthwise convolution blocks of MobileNetV2).

12



Residual block

Residual block is a component in the famous ResNet [12], where a skip connection
is introduced to tackle the problem of vanishing gradient when training deep neural
networks. Vanishing gradient is an optimization problem in deep learning where the
gradients become smaller and smaller after several applications of the chain rule and
finally become zeroes, meaning that there are weights whose values will never be
updated and therefore no learning is being performed.

Although the network depth has been showed of crucial importance in the liter-
ature ([10], [16]), experiment pointed out that deeper models are harder to optimize.
A typical example is showed in figure 2.7 [12], where adding more layer to a suit-
ably deep model leads to higher training and testing error. This seems apparently
counter-intuitive because theoretically the deep networks must not be worse than
similar shallow networks, for there exists a solution by construction to the deeper
model: the first layers are taken from the learned shallower model, and the subse-
quent layers are identity mappings.

Figure 2.7: ResNet motivation: An example of a deeper network giving higher training error than a
shallow network.

ResNet tackles the degradation problem by introducing a deep residual learn-
ing framework. In ResNet, an input x , after going through a series of weigh layer
mapping it toF (x ), is added with the original x by a shortcut connection (see figure
2.8). A mapping from x to F (x ) + x by this mechanism is called residual mapping.
Experimental results showed that the residual mapping is easier to optimize than the
original, unreferenced mapping. As a small note, this is a kind of shortcut connec-
tions which simply perform identity mapping.

Depthwise separable convolution block

This block type (figure 2.9) was first introduced in Xception [17] and used in Mo-
bileNetV1 architecture [20], composing of a 3x3 depthwise convolution and a 1x1
pointwise convolution, each followed by a batch normalization [13] and ReLU non-
linearity. More specifically, ReLU6 is used, which is similar the popular ReLU but it
prevents activations from becoming too large:

y =min(max(0, x ), 6) (2.4)

The authors of the MobileNet paper found that ReLU6 is more robust than ReLU
when using low-precision computation.

13



Figure 2.8: Residual Connection.

The goal of the depthwise separable convolution block is to reduce the number
of parameters while retaining the complexity of the mapping. It does approximately
the same thing as traditional convolution but is much faster because of using fewer
parameters (see figure 2.9). To reduce the resolution of input, instead of using pooling
layers like in traditional CNN, MobileNetV1 makes use of depthwise layers with stride
2 while simultaneously doubles the number of output channels by pointwise layers.
The design of a depthwise separable convolution block is depicted in figure 2.10a.

Figure 2.9: Depthwise Convolution: Block A is a standard convolution layer with 32 filters of size 3×3
and depth 16. Block B is a depthwise Convolution layer, which consists of 16 3× 3 with depth 1 and
32 filters of size 1×1 and depth 16, producing an output of a same size as in block A with much fewer
parameters.

Bottleneck residual block.

Using low-dimension tensors is an approach to reducing the number of computa-
tions as the smaller the tensor, the fewer multiplications the convolutional layers

14



(a) Depthwise Separable Convolu-
tion Block. (b) Bottleneck Residual Block.

Figure 2.10: Encoders in MobileNet architectures.

15



have to do. Nevertheless, low-dimensional tensors will not be able to extract much
information. If the low-dimensional data that passes between the blocks can be con-
sidered as being a compressed version of the real data, we can design layers that act
like a decompressor restoring data to its original form. Employing this idea, Mo-
bileNetV2 [28] introduces Bottleneck Residual Block (figure 2.10b), which consists
of three convolutional layers in the block: a depthwise convolution that filters the
inputs between two 1x1 pointwise convolution layers - a compressor and a decom-
pressor.

Specifically, this block first takes as input a low-dimensional compressed rep-
resentation, then passes this representation into a decompressor (1× 1 convolution)
that expands it to high dimension, filters it by a depthwise convolution, and finally
uses a compressor (1×1 convolution) to project it back to the original space of lower
dimension. The final step, which maps a low-dimensional tensor to a high-dimensional
layer, is called a bottleneck, thus gives the name of this module. How much the data
gets expanded is control by a hyperparameter called the expansion factor. For exam-
ple, with an expansion factor of 6, the input tensor of depth 24 will be expanded to
a new tensor with 24× 6 = 144 channels. So the input and the output of the block
are low-dimensional tensors, while the filtering step that happens inside the block is
done on a high-dimensional tensor.

Another new component in this block compared to depthwise Separable Block
is the residual connection to help with the flow of gradients through the network. As
usual, each layer has batch normalization and the activation function is ReLU6. How-
ever, the output of the projection layer does not have an activation function applied
to it. As the output of this layer is in low-dimensional space, experiments showed that
using a non-linearity subsequent to this layer actually destroyed useful information.

2.5.2 Decoders

A decoder component receives a low-resolution image and returns a high-resolution
image. The need for this type of convolution rises from the need for encoder in image
analysis: as an encoder projects input into lower-dimensional spaces to capture the
hierarchical structure in images, in the segmentation problem (which is formulated
as a pixel classification problem), those lower-dimensional spaces need to be con-
verted back to the original resolution. This can be performed by at least two types of
operations 3:

Nearest neighbors upsampling

This algorithm is an interpolation method which, like convolution, performs a math-
ematical operation on each pixel (and its neighbors) within the image to enlarge the
image size. In the simplest case, the value of each pixel is replicated and placed
nearby. More complex combinations of neighboring information such as bilinear, cu-
bic, and Lanczos interpolation can produce smoother and realistic upsampled out-

3https://www.intel.ai/biomedical-image-segmentation-u-net/

16



put. Figure 2.11 provides visualizations of how nearest neighbors upsampling is done
by replicating and by bilinear interpolation.

Figure 2.11: Visualization of some nearest neighbors upsampling methods

Transposed convolution

To understand the concept of transposed convolution, first we can see convolution
as a matrix operation [18]. Take a simple 1D convolution as an intuitive example, the
normal convolution between a 4×1 matrix and a 3×1 filter with stride 1 and padding
1:

−→a ∗−→x =





















0

a

b

c

d

0





















∗







x

y

z






=











a y + b z

a x + b y + c z

b x + c y +d z

b x +d y











(2.5)

This convolution can be expressed as a sparse matrix multiplication as follows:

X×−→a =











x y z 0 0 0

0 x y z 0 0

0 0 x y z 0

0 0 0 x y z











×





















0

a

b

c

d

0





















=











a y + b z

a x + b y + c z

b x + c y +d z

b x +d y











(2.6)

The transposed convolution can be defined as the matrix multiplication of the

17



transpose of X with −→a (note that there is no padding here):

XT ×−→a =





















x 0 0 0

y x 0 0

z y x 0

0 z y x

0 0 z y

0 0 0 z





















×











a

b

c

d











=





















a x

a y + b x

a z + b y + c x

b z + c y +d x

c z +d y

d z





















(2.7)

Look at the result of the above transpose convolution, we can see that it is similar to
a regular convolution (with different padding rules). This is due to the trivial stride of
1. But when we increase stride to 2, we can see that the transposed convolution is not
longer a normal convolution and it really does upsampling:

X×−→a =

�

x y z 0 0 0

0 0 x y z 0

�

×





















0

a

b

c

d

0





















=

�

a y + b z

b x + c y +d z

�

(2.8)

XT ×−→a =





















x 0

y 0

z x

0 y

0 z

0 0





















×

�

a

b

�

=





















a x

a y

a z + b x

b y

b z

0





















(2.9)

Figurative illustration of 2D transposed convolution can be seen in figure 2.12.

Figure 2.12: Transposed Convolution

18



2.6 Loss function

2.6.1 Binary cross-entropy

The prediction mask P = (pi j ) ∈ [0, 1]H×W ×C and the groundtruth T = (ti j ) ∈ [0, 1]H×W ×C

can be described as matrices of probability distribution, where pi j = (x1, x2, . . . , xC ) and
ti j = (y1, y2, . . . , yC ) are the categorical probability distributions of pixel at the position
(i , j )). The cross-entropy formula calculates how close those pairs of distribution are
to each others:

H (pi j , ti j ) =
C
∑

i=1

xi log yi (2.10)

In the binary case, the formula is:

LB C E =
∑

1≤i≤H
1≤ j≤W

−ti j log(pi j )− (1− ti j ) log(1−pi j ) (2.11)

where pi j ∈ [0, 1] is the value (probability of class 1) at position (i , j ) in the prediction
and ti j ∈ {0, 1} is the ground truth at position (i , j ).

2.6.2 Jaccard distance

In the segmentation problem, a segmented object can be considered as a set of pixel
positions where the object resides. The Jaccard distance, which is calculated from
Jaccard index (or Intersection Over Union), measures the dissimilarity between 2 sets:

LJ a c c a r d = 1− J (P, T ) (2.12)

where P is a set of predicted pixel positions of an object, T is a set of true pixel posi-
tions of that object, and the Jaccard Index J (P, T ) is defined as the size of the intersec-
tion divided by the size of the union of the two sets:

J (P, T ) =
P ∩T

P ∪T
(2.13)

When P and T are two binary masks, Jaccard index can be defined using the
definition of true positive (TP), false positive (FP), and false negative (FN) as:

J (P, T ) =
T P

T P + F P + F N
(2.14)

where T P is the number of pixel positions belong to the object in both the predicted
mask and the groundtruth, F P is the number of pixel positions belong to the object
in the predicted mask but belong to the background in the groundtruth, and F N is
the number of pixel positions belong to the object in the groundtruth but belong to
the background in the predicted mask (see table 2.1).

In the binary segmentation task, a deep learning model will give the prediction

19



yt r ue (i , j ) = 1 yt r ue (i , j ) = 0

yp r e d (i , j ) = 1 TP FP
yp r e d (i , j ) = 0 FN TN

Table 2.1: TP, FP, FN in a confusion matrix.

in form of a matrix P = (pi j ) ∈ [0, 1]H×W whose each pixel is a value pi j of the probability
for that pixel belonging to the object. On the other hand, the groundtruth is a matrix
T = (ti j ) ∈ {0, 1}H×W of the same size in which each element is 0 or 1. The formula for
Jaccard Index between these two matrices is:

J (P, T ) =
1

H ×W

∑

i , j

pi j × ti j

pi j + ti j −pi j × ti j
(2.15)

This equation is derived from the formula 2.15 with below specifications:

T Pi j = pi j × ti j (2.16)

F Pi j = pi j −pi j × ti j (2.17)

F Ni j = ti j −pi j × ti j (2.18)

Using the formula 2.15 makes the loss differentiable, which is a requirement to
perform optimization techniques such as Stochastic Gradient Descent.

2.6.3 Dice coefficient

This coefficient is similar in form to the Jaccard index.

LD i c e = 1−D (P, T ) (2.19)

in which

D (P, T ) =
2|P ∩T |
|P |+ |T |

(2.20)

When applied to boolean matrices, using the definition of TP, FP, FN in section 2.6.2,
equation 2.20 can be written as:

D (P, T ) =
2T P

2T P + F P + F N
(2.21)

To make D (P, T ) differentiable, the following formula will be used:

D (P, T ) =
1

H ×W

∑

i , j

2×T Pi j

2×T Pi j + F Pi j + F Ni j
(2.22)

where
T Pi j = pi j × ti j (2.23)

20



F Pi j = pi j −pi j × ti j (2.24)

F Ni j = ti j −pi j × ti j (2.25)

2.6.4 Combined losses

As being characteristically different measures for same goal, BCE and Jaccard dis-
tance (or Dice coefficient) can be combined into a single loss in order to tackle the
characteristic variability of objects:

LB C E+J a c c a r d =αLB C E +LJ a c c a r d (2.26)

or similarly
LB C E+D i c e =αLB C E +LD i c e (2.27)

where α is a weight of importance assigned to BCE loss.

2.7 Active contour model

Active contour model [2] is a method to fit open or closed outlines (called snakes)
to lines or edges in an image. A snake is an energy minimizing, deformable spline
influenced by constraint and image forces that pull it towards object contours and
internal forces that resist deformation.

Formally, a snake (or contour) is defined be a set of n points V = {v1, v2, . . . , vn},
where vi = (xi , yi ) for i = 1..n . The energy function of the snake is the total sum of its
internal energy,and external energy:

Es na k e =
n
∑

i=1

(Ei n t e r na l (vi ) +Ee x t e r na l (vi )) (2.28)

Then fitting the snake (or contour) onto the image is equivalent to the optimiza-
tion problem of finding V ∗:

V ∗= arg min
V ={v1,...,vn }

Es na k e (2.29)

Now we will look in detail two principal components of the energy: internal
energy and external energy. The internal energy is a term that only depends on the
shape of the snake. It composed of 2 energy parts, i.e. continuity energy which keeps
the snake from stretching or contracting along its length and curvature energy which
keeps the snake from bending:

Ei n t e r na l = Ec o n t +Ec u r v (2.30)

where Ec o n t and Ec u r v are defined based on the first and the second derivative respec-
tively:

Ec o n t =α
∑

i

|vi+1− vi |2 (2.31)

21



Ec u r v =β
∑

i

|vi+1−2vi + vi−1|2 (2.32)

In contrast, the external energy is defined based image features, where strong
features have low energy and weak features (or no features) have high energy. Specif-
ically, it consists of three terms, that are El i ne corresponding to lines in the images,
Ee d g e sensitive to edges and Et e r m relating to line terminations and corners:

Ee x t e r na l =wl i ne El i ne +we d g e Ee d g e +wt e r m Et e r m (2.33)

in which El i ne = I (vi ) is the intensity of pixels in the image, Ee d g e = −|∇I (vi )|2 is the
gradient, and Et e r m is computed from curvature of level lines in a slightly smoothed
image:

Et e r m =
Cy y C 2

x −2Cx y Cx Cy +Cx x C 2
y

(C 2
x +C 2

y )
3
2

(2.34)

where C (x , y ) =Gσ ∗ I (x , y ) is the image smoothed by a Gaussian kernel.

In active contour model, there are hyperparameters such as α, β , wl i ne , we d g e ,
wt e r m to control the affect of each energy term on the fitting of the snake.

22



Chapter 3

Methods

3.1 Overall pipeline

The overall pipeline of conducting experiments in a deep learning manner for the LV
segmentation problem in noisy 2D echocardiography is described in figure 3.1. First,
annotated data will be split into a training set and a testing set, each consisting of
images and corresponding annotated masks. Next, the images will be converted to a
proper color space, and the masks are used to generate a boundary-weight image if
necessary. Subsequently, both images and masks will go through an augmenter; they
are first resized to a chosen shape depending on the model and then are applied ba-
sic affine transformation such as translation, scaling, rotation and flipping or other
non-linear transformation such as grid distortion or elastic transform to create new
data. This augmentation process is done in real-time in training (i.e. while the data is
being fed into the model). The testing set is processed similarly, except for augmen-
tation where its images are only resized, and is used as a validation set to pick up the
best model. The final phase is refinement, where the prediction on the test set can
be further improved by inference strategies such as test-time augmentation (where
predictions are made on differently modified versions of an image, and the final out-
put is a combination of those predictions) or statistical shape methods such as active
shape model.

Due to the limitation of computing power, not all preprocessing and postpro-
cessing methods, architectures, training strategies and the combination of those can
be tested to decide which will form the best pipeline. As a result, the experiment
procedure will be constructed in a bottom-up manner. It means that methods will
be examined in a logical order, and after each method, settings that associate with
the best result will be chosen and fixed for subsequent trials. For example, if a color
space is shown experimentally to give the best model performance, all the follow-
ing experiments will use that color space. Hence, the methods in this chapter will
be structured according to the order of experiment: first, I describe some prepro-
cessing techniques, then move to the architecture, training and inference strategies,
and finally post-processing mechanisms. In each section, I introduce those tech-
niques and describe how they were used in the experiments. The detail results will
be showed and analyzed in Chapter 4.

23



F
ig

u
re

3.
1:

P
ip

el
in

e.

24



Figure 3.2: Affine Transformation. White grid lines are added similarly to all images for better visual-
ization.

3.2 Preprocessing

3.2.1 Color spaces

The thesis examines different color spaces for preprocessing images in order to figure
what works best in practice for the available dataset. Five color space are considered:
RGB (red, green, blue), gray-scale, HSV (hue, saturation, value), YUV (Y stands for
the luminance component (the brightness) and U and V are the chrominance (color)
components), and YCbCr (Cb, Cr are the blue-difference and red-difference chroma).
Experimental results indicated that HSV gives a slightly higher IoU score compared
to other color spaces. This can be explained as HSV space separates color informa-
tion from intensity or lighting, so the neural network can learn regardless of lighting
changes in the environment. As stated above, from now on, all the data will be con-
verted to HSV before further processing.

3.2.2 Data augmentation

Data augmentation is a technique to create new data from the available data. As it is
common knowledge that the performance of deep learning models improves in con-
cert with the size of the training dataset, data augmentation is an essential step when
adopting a DL approach, especially when the available dataset is small. Besides, the
modified versions of the images in the training dataset aid the model in extracting
and learning characteristic features and make the model invariant to lighting condi-
tion, position, noise, etc., thus provide it with the ability of generalization. Common
methods of augmenting data are affine transformations (translation, scale, rotation,
horizontal/vertical flipping . . . ) (see figure 3.2). In addition to these commonly used
transforms, operations like grid distortion and elastic transform often can be helpful,
see figure 3.3, since medical imaging is often dealing with non-rigid structures that
have shape variations. [25].

25



Figure 3.3: Grid Distortion and Elastic Transform. White grid lines are added to the original image and
transformed accordingly for better visualization.

3.3 Architectures

3.3.1 Segmentation Architectures

This thesis tested two architectures Unet and Linknet with two different encoder
backbones and two different decoder types.

3.3.2 Encoder Backbones

Every sequence of layers that projects an input onto a smaller dimension can be used
as an encoder. In this thesis, two types of encoders were experimented, which is
based on designs in ResNet and MobileNetV2 architectures. More specifically, we
adopt blocks from those two architectures that downsample input to put in our Unet/Linknet
encoder positions.

In terms of ResNet (figure 3.4a), a tensor of shape H ×W ×C will be downsam-
pled by a factor of 2 with a max pooling operation. The output tensor will be fed
into two blocks, one is two consecutive normal convolution layers and the other is
a pointwise convolution. The two output tensor will be added together, and finally,
go through a block of 2 normal convolution layers with the residual connection. The
final output has the shape of H

2 ×
W
2 × 2C , which means the shape is halved on each

side and the channel is doubled.

With regards to MobileNetV2 (figure 3.4b), the first max pooling is replaced by
a depthwise convolution with stride 2, followed by a pointwise convolution that pro-
jecting the input into the lower dimension of depth C

4 . After that, the output will
go through a bottleneck residual block with expansion factor of 6, and finally be ex-
panded by a 1×1 convolution layer. The final output also have the shape of H

2 ×
W
2 ×2C .

26



(a) ResNet (b) MobileNetV2

Figure 3.4: Two experiment encoders. Conv2D(c, k, s) represents a 2D convolution with c filters of
k ×k with stride s . Depthwise Convolution(k, s) denotes the use of k ×k filters with stride s .

27



3.3.3 Decoder

The decoder blocks used in experiments are similar to ones proposed in Linknet: it
consists of a transposed convolution (or upsampling) layer between two pointwise
convolution layers (this design resembles bottleneck design of block in MobileNetV2
but in the opposite). Specifically, if the input tensor is of shape H ×W ×C , first it is
projected to lower-dimensional space of C

4 by a pointwise convolution, then doubly
upsampled to shape 2H×2W by a transposed convolution layer or a upsampling layer
followed by a normal convolution, and finally expanded to higher-dimensional of C

2

by another pointwise convolution (figure 3.5). Hence there is only one setting here,
which are the choice of how the input is upsampled, by nearest neighbor methods
(Upsampling2D) or by transposed convolution (TransposedConv2D).

3.4 Boundary-weighted loss function

Segmentation in medical imaging requires a high accuracy (especially in the bound-
ary region) in order to be practical. To address this problem, a weight mask is created
for each ground truth mask which places greater importance to pixels at the bound-
ary, leading to the model forced to learn to accurately classify each boundary pixel.
This is a preprocessing applied to masks, based on distance transform.

Formally, given a binary mask M = (mi j ), the weight mask W = (wi j ) is defined
as:

wi j =

¨

0 if mi j = 0

di j if mi j = 1
(3.1)

where di j is the Euclidean distance from position (i , j ) to its nearest boundary pixel
location.

A visualization of the procedure is depicted in figure 3.6. First, the contour of
the image is estimated. It is represented as a list of points along the boundary of the
mask object. Connecting these points with lines of thickness 1 gives a 1-pixel wide
boundary of the mask (called it a contour image). Then the distance transform (DT)
image corresponding to the mask is calculated based on the contour image. Each
pixel of the DT image is the distance (in Euclidean space) from that pixel’s location
to the location of the nearest non-zero pixel. Finally, the weight mask is given by
inverting the DT image, removing the region outside the mask (or the contour).

3.5 Training and Inference Strategy

3.5.1 Pseudo-labeling

A pseudo-labeling [7] is in the realm of semi-supervised learning, in which a model
makes use of both labeled and unlabeled data (typically a small amount of labeled
data with a large amount of unlabeled data). As annotating data is a time-consuming,

28



Figure 3.5: Two experiment decoders corresponding to two choices: transposed convolution or up-
sampling. Note that Upsampling2D(s) means the use of Upsampling method with upsample factor of
s .

29



Figure 3.6: Procedure of making a weight mask: The contour is extracted from the binary mask to
create a contour image, then this image is used to compute distance image and subsequently weigh
mask.

laborious and expert-dependent process, there arises a situation where there are a
great number of images unannotated. Using annotated data as guiding points, pseudo-
labeling takes advantages of those unannotated data to help model learn about the
underlying patterns in the images.

Here is how pseudo-labeling works: First, a model is trained on a small amount
of labeled data. Next, the trained model is used to predict label (or mask in the seg-
mentation problem) for unlabeled data; those will be called pseudo-labeled data. Af-
ter that, pseudo-labeled data is filtered by some predefined confidence metrics (as
we only want to take data that the model is highly confident about), and merge them
with expert-labeled data. Finally, the model is retrained on this dataset, and the pro-
cedure is repeated until the model accuracy does not improve or some other criteria.

Figure 3.7: Pseudo Labeling.

30



Figure 3.8: Test-time Augmentation

3.5.2 Test-time augmentation

Test-time augmentation (TTA) is a widely used technique to boost the accuracy of
segmentation models ([31], [30], [11], [29], [21], [27]). In TTA, different transforma-
tions are applied to test images such as translations, scaling, rotations, and flipping,
then these different transformed images are fed into the trained model and the fi-
nal step is ensembling the results to get a more accurate prediction. This technique
comes from the intuition that changing the test image in different ways will give the
model more opportunities to make inference based on various views of the same im-
age, which increases the chance of producing accurate predictions. While test-time
augmentation takes advantage of transforms used in train-time augmentation, it in-
creases the computational costs because it requires making predictions several times.

3.6 Post processing

This section explores the usage of the active shape model and the active contour
model on the refinement of segmentation result from deep learning model.

31



Figure 3.9: Some methods to combine the TTA results

3.6.1 Active contour model

The active contour model algorithm described in section 2.7 will be used with the
initial snake initialized as an eclipse that completely contains the contour.

3.6.2 Active shape model

Left ventricular shapes in 2D echocardiogram usually vary in appearance signifi-
cantly from one image to another, but still, retain some characteristic features. Active
shape models (ASM), developed by Tim Cootes and Chris Taylor [3], are statistical
models representing the shape of objects, in which an initialized shape is iteratively
deformed to fit an instance of the object in a new image.

In this thesis, a simplified active shape model was implemented to improve the
segmentation output of the deep learning model, which is a binary image where
white pixels belong to the object and black pixels belong to the background. This
step is necessary because the shape of LV from segmentation output is quite arbi-
trary (as the segmentation network is a per-pixel classification network, so it does
not give much attention on the information of shape). Given a binary image with
a single object, the active shape model aims to properly initialize a shape and fit it
to that object so that the final shape of the object is recognizable and acceptable by
experts.

The algorithm of the active shape model can be described step by step as fol-
lows:

1. Training a model of shape from data Given groundtruths of training images
(i.e. binary masks), a contour extraction algorithm is used to extract the bound-
ary (or shape) of left ventricles. After that, 3 pivot points of the LVs (one tipping
point and two bottom points) will be specified manually or by a trained objec-
tion detection model, and n −3 other points will be automatically generated on
three segments created by those three pivot points, all are equally distributed
on each segment by angle. This process produces training data of shape, each
is composed of n landmarks. Then, a dimensionality reduction method (here
is Principal component analysis - see appendix A) is adopted to model those

32



shapes from the training set. This model is used in later steps to control the
deformed shape which will be fit to the object in a new image.

The result of this step is a PCA model is represented by a mean shape m =
(x1, x2, . . . , xn , y1, y2, . . . , yn ) ∈ R2n (relating to n landmarks), k largest eigenvalues
{θ1,θ2, . . . ,θn},θi ∈ R chosen to cover 99% variance of the dataset and k corre-
sponding eigenvectors {v1, v2, . . . , vk} ⊂R2n . Those vectors form a basis of a sub-
space V where the data is projected on.

2. Generating a distance image A distance image is an image corresponding to
a binary image where intensities of pixels on the corresponding object bound-
ary are the highest, and the further a pixel from the boundary, the smaller its
intensity. This type of image is used to compute the difference between an ar-
bitrary shape and the object: the higher total intensity sum of shape pixels, the
fitter the shape to the object.

To compute the distance image, first, from the binary image, a contour-finding
algorithm is conducted, which returns a list of points on the object boundary.
Connecting consecutive points in the contour gives a thin boundary, then from
this boundary image, a distance transform image is calculated. The inverse of
the distance transform image gives the distance image.

Figure 3.10: An example of the procedure for Active Shape Model

3. Defining affine transformation Given a shape S = {(x1, y1), (x2, y2), . . . , (xn , yn )},
the transformation Ts ,θ ,tx ,t y

that translates S by (tx , t y ), rotates S by angle θ and
scales S by a factor s can be represented by a matrix multiplication:

Ts ,θ ,tx ,t y
(S ) = S ′ =













x ′1 y ′1
x ′2 y ′2
...

...

x ′n y ′n













=













x1 y1 1

x2 y2 1
...

...

xn yn 1













×







s cosθ s sinθ

−s sinθ s cosθ

tx t y






= [S , 1]×M (3.2)

33



where

M =







s cosθ s sinθ

−s sinθ s cosθ

tx t y






(3.3)

is called transformation matrix.

4. Shape transformation from PCA model Given a subspace V whose basis is
k eigenvectors {v1, v2, . . . , vk}, any shape in that subspace is a linear combination
of vectors in the basis. Formally, any shape vs ∈V can be expressed as:

vs = v1a1+ v2a2+ · · ·+ vk ak =V a (3.4)

where

V =







| | . . . |
v1 v2 . . . vk

| | . . . |






(3.5)

a= [a1 a2 . . . ak ]
T (3.6)

The shape to fit onto the object in a new image then is defined by the transfor-
mation from the subspace:

Ta,s ,θ ,tx ,t y
= Ts ,θ ,tx ,t y

(V a) (3.7)

Here a, s ,θ , tx , t y are variables to optimize in order to find the best fit.

5. Initializing the mean shape on the distance image Initialization is an impor-
tant step in the active shape model. A good initialization has a positive effect on
the convergence of the model, while a poor one may make it hard to optimize
even if the algorithm is sophisticated. In the experiment using ASM, the mean
shape from PCA with proper scaling and translation will be chosen to be the
initialized shape. More specifically, the mean shape will be translated so that its
center is matched with the object’s center, and its area is 1.5 times larger than
the object’s area. This heuristic aims to put the object approximately fit in the
initialized shape, which can lead to faster and more accurate convergence.

6. Defining loss function Given a shape represented by a list of points {(xi , yi )}ni=1
and a distance image D, minimizing the loss function L is equivalent to mini-
mizing the difference between the shape and object boundary:

L =
n
∑

i=1

D(xi , yi ) (3.8)

where :
Ta,s ,θ ,tx ,t y

= Ts ,θ ,tx ,t y
(V a) = [x1 y1 x2 y2 . . . xn yn ]

T (3.9)

As showed above,L is a function of transformation parameters (s ,θ , tx , t y ) and

34



PCA model parameter a. We aims to find (a, s ,θ , tx , t y ) that minimizeL :

(â, ŝ , θ̂ , t̂x , t̂ y ) = arg max
a,s ,θ ,tx ,t y

L (a, s ,θ , tx , t y ) (3.10)

7. Fitting by Gradient Descent To find the minimum of L , we use an iterative
optimization algorithm called Gradient Descent.

a= a−α
δL
δa

(3.11)

where the derivatives can be calculated by the chain rule:

δL
δa
=

n
∑

i=1

D(xi , yi )
δa

=
n
∑

i=1

D(xi , yi )
xi

xi

δa
+

n
∑

i=1

D(xi , yi )
yi

yi

δa
(3.12)

The derivative of distance image with respect to x -coordinate and y -coordinate
(i.e. D(xi ,yi )

xi
and D(xi ,yi )

yi
) can be calculated by computing Sobel derivative image.

Figure 3.11: Active Shape Model Iterations

35



Chapter 4

Experiments

4.1 Data

Images from the dataset are 2D echocardiography images that is displayed on dif-
ferent computers and captured under different environmental factors such as light-
ing conditions or noises. Boundaries of left ventricular regions in those images then
were annotated by a domain expert. After that, images of binary masks were gener-
ated from those annotated boundaries, and the final raw dataset composed of those
masks paired with corresponding images.

Quantitatively, there are total 2418 (image, mask) pairs from 78 videos. Those
were split by video into a training set and a testing set, consisting of 1909 (from 62
videos) and 509 (from 16 videos), respectively.

4.2 Experimental Settings

All the code to produce experiments is implemented in Python 1, and the training
procedure was conducted on Google Collaboratory 2 with Tesla K80 GPU. Other in-
formation about experiments specified to each method will be described below in
detail.

4.2.1 Data Augmentation

All the augmentation methods are performed using albumentations library 3. They
are applied with the probability of 0.5, the border values are set to be zero constant
and interpolation method is bilinear interpolation. Besides, all the images (in both
training and testing set) will be resized to have a shape of (512, 256). Specific settings

1https://www.python.org/
2https://colab.research.google.com
3https://github.com/albu/albumentations

36



Figure 4.1: A sample view of dataset: the upper row contains sample pairs from the training set, the
lower row contains sample pairs from the testing set.

for each technique are:

Affine Transformation The translation limit is set to 0.1 (i.e. the image will be ran-
domly translated, horizontally and vertically in the range equals to 10% of width and
height respectively). Similarly, the scale limit is 0.1 (equivalent to 0.9−1.1 range), the
rotation limit is 5o.

Grid Distortion This technique will be performed in 5 steps, with distortion limit
set to 0.3.

Elastic Transform α= 100 and σ= 10.

4.2.2 Architectures

The number of channels before EC1, EC2, EC3 and EC4 (and similarly after DC4, DC3,
DC2 and DC1) in Linknet and Unet architecture are set to be 32, 64, 128, 256 respec-
tively, and the tensor after EC4 and before DC4 has a depth of 512. Each encoder
downsamples and each decoder upsamples the input by a factor of 2.

All the models is implemented with Tensorflow Keras 4.

4https://www.tensorflow.org/guide/keras

37



Figure 4.2: IoU Visualization.

4.2.3 Training

The optimization algorithm used in training CNN models is RMSprop 5 with initial
learning rate of 0.001.

4.2.4 Postprocessing

Active contour model Parameters are set as follows: α= 0.005, β = 200, wl i ne = 1 and
we d g e = 1.

Active shape model Each shape is represented by 20 points (or 40 values). Opti-
mization method is Schocastic Gradient Descent (implemented in PyTorch 6). Opti-
mization procedure is conducted as follows. First only model parameter a is updated
with learning rate of 5×10−6 and momentum of 0.9 while transformation parameters
s ,θ , tx , t y are freezed. After 20 epochs, the learning rate of a is reduced to 10−6, and
that of θ is set to 10−6 while those of s , tx , t y are set to 10−3. The momentum value is
still 0.9. The total number of epoch is 50.

4.3 Metric

Intersection over Union (IoU) is an evaluation metric used to measure the accu-
racy of a segmentation result. It is defined by the ratio between the area of overlap
between the ground truth mask and the predicted mask of the same object and the
area of union between those two masks. Specifically, if the ground truth mask is the
binary matrix T , and the predicted mask is the binary matrix P , where white pixels
represent the object and black pixels belongs to the background, then IoU score can
be computed as:

IoU=
Area of overlap
Area of union

=
sum(T and P )
sum(T or P )

(4.1)

5Geoffrey Hinton’s Neural Networks for machine learning (https://www.coursera.org/learn/neural-
networks)

6https://pytorch.org/

38



Color model mIoU stdIoU

RGB 0.8462 0.0916
HSV 0.8501 0.0797

YCbCr 0.8498 0.0831
YUV 0.8371 0.1170

Gray-scale 0.8466 0.0908

Table 4.1: Experiment results of color spaces.

4.4 Results and Analysis

As mentioned before, due to the fact that the computational power is limited, exper-
iments will be conducted in chronological order of methods introduced in chapter
3, and each method (except the first) will take the best of the previous method as a
baseline. We will use Linknet architecture with MobileNetV2 encoder and upsam-
pling-type decoder and BCE Jaccard loss as the default setting.

4.4.1 Color spaces

Table 4.1 shows the experiments on five color spaces: RGB, HSV, YCbCr, YUV and
gray-scale (here mIoU and stdIoU means the mean and standard deviation of IoU
scores computed from test data). The result shows that HSV colors gives the best re-
sult on both mIoU (0.8501) and stdIoU (0.0797), which followed closely by YCbCr and
leaving the popular RGB by a margin of 0.004 and 0.022 in mIoU and stdIoU respec-
tively. A reason for this slightly improvement could be that the images in dataset were
taken under different light conditions, so color spaces which separating brightness
component such as HSV, YCbCr (note that YCbCr is in fact HSV in another coordi-
nate) will be given more starting advantage to adapt with the lighting variability of
dataset. The similarity in the result of RGB and gray-scale is also understandable, as
regardless of being taken in color, the images of 2D echocardiogram in the dataset
are still covered by a large region of original display of 2D echocardiogram, which is
in gray-scale.

4.4.2 Data augmentation

It can be seen from Table 4.2 that while performing non-linear transformations such
as grid distortion and elastic transform on training set only improve the result from
by approximately 0.008 from 0.8501 (Table 4.1) to 0.8587 and 0.8582 respectively, affine
transformation (with and without horizontal flipping ) improve much further to 0.8648
(and 0.8714). This can be explained as the nonlinearity greatly deforms the shapes of
left ventricles compared to linear transform, then makes the features of left ventricles
harder to learn. Finally, the combination of affine transformation, horizontal flipping
and grid distortion give the best mIoU score (0.8744) and stdIoU score (0.0710) (note
that the combination of affine and elastic transform are not experimented, as in elas-
tic transform the image is also slightly translated and rotated).

39



Color mode Augmentation Method mIoU stdIoU

HSV Affine 0.8648 0.0828
HSV Affine, Hflip 0.8714 0.0711
HSV Grid Distortion 0.8587 0.0897
HSV Elastic Transform 0.8582 0.0956
HSV Affine, Hflip, Grid Distortion 0.8744 0.0710

Table 4.2: Experiment results of augmentation methods.

Loss function mIoU stdIoU

BCE 0.8651 0.0827
Dice 0.8737 0.0676

BCE Dice 0.8726 0.0736
Jaccard 0.8726 0.0637

BCE Jaccard 0.8744 0.0710
Weighted BCE Jaccard 0.8805 0.0633

Table 4.3: Experiment results of loss functions.

4.4.3 Loss function

In terms of loss function, five loss functions are tested, which are Binary cross-entropy,
Dice, Jaccard and the combination of the first with the latter two. The results showed
that BCE-Jaccard combination produces the highest mIoU score of 0.8744 and the
lowest standard derivation of 0.0710 (Table 4.3). After that, this best loss will be weighted
by the method proposed in section 3.4, and this gives a nice improvement on both
mIoU and stdIoU scores. This strengthens the assumption that the boundary is of
greater importance than the region inside the object, and more weights give to the
pixel on boundary truly improve the result.

4.4.4 Architectures

Next experiments are about two different architectures (Linknet and Unet) with two
different encoders (MobileNetV2-based and ResNet-based) and two different decoder
options (transposed convolution or upsampling ). To reduce the number of experi-
ment needed (original 2×2×2= 8), first two experiments on decoders were conducted,
then the best decoder options was used with architectures and encoders (1+2×2= 5 in

Architecture Encoder Decoder mIoU stdIoU

Linknet MobileNetV2 Upsampling 0.8805 0.0633
Linknet MobileNetV2 Transpose 0.8753 0.0846
Linknet ResNet Upsampling 0.8720 0.0685

Unet MobileNetV2 Upsampling 0.8737 0.0673
Unet ResNet Upsampling 0.8712 0.0706

Table 4.4: Experiment results of architectures.

40



total). From the table 4.4, we can see that upsampling decoder gives a slightly higher
score than transposed convolution, and when fixing upsampling decoder, Linknet ar-
chitecture with MobileNetV2 encoder gave the best result.

Figure 4.3 shows plots of training and validation losses and mean IoU scores on
three models with best setting from each section: HSV model from section 4.4.1, HSV
with data augmentation (SCR, Hflip and Grid Distortion) model from section 4.4.2,
and model with those settings trained with Weighted BCE Jaccard loss from section
4.4.3 (note that this is also the best model from section 4.4.4). It can be noticed from
plots that HSV model subjected to overfitting with extremely low training loss com-
pared to HSV + Aug (and similarly extremely high training IoU compared to other
two models), while its validation side is considerably inferior to the other two. This is
understandable as the data fed into is without augmentation, so the model was hard
to learn prominent features. With heavy data augmentation, HSV + Aug showed a
considerable boost in model performance, and modifying the loss function to con-
centrate into boundaries will give HSV + Aug + WBCEJ model a slightly better IoU
score on the validation set.

Figure 4.4 gives two examples that prove the effectiveness of the boundary-
weighted loss. HSV model, which was only trained on raw data, showed a weak gen-
eralization ability, as it failed on low contrast regions and extremely noisy images.
While HSVA (HSV + Aug ) presented some improvement as it can trace the boundary
more accurately than HSV did, there are still some failure regions where the segmen-
tation boundary was highly distorted. HSVAW (HSV + Aug + WBCEJ ), in which more
importance was given to pixels at the border, showed its ability to produce smooth
boundary and give a better segmentation result. This experimentally proved that
weighted-boundary loss truly helps the model to produce a non-distorted and pre-
cise boundary, which is very important in medical imaging.

Two figures 4.6 and 4.5 provides some best and worse predictions of HSVAW
model. Figure 4.6 showed that the model can not give good segmentation results if
there are regions with ambiguities (such as those on the right of LV in the left image)
or the image is of low contrast (the middle image) or there are many noises (the left
image). Although these problems were tackled to some extents (looking at images in
figure 4.5, where all those degradation factors exist at a moderate degree), it reveals
that the best model still has rooms for development, such as in the ability to cope
with high variance in images.

4.4.5 Strategies

Test-time Augmentation

There are four experiments on test-time augmentation. As this technique is only fea-
sible when the transformations are invertible, only affine transformation and hori-
zontal flipping are applied to the original image. In the first experiment, the image
is only augmented one time. Then the predicted masked is reverse-transformed to
the coordinate corresponding to the original image as the final output. In other three

41



Figure 4.3: Training histories of three best models from each section.

Figure 4.4: Comparison of sample results on the testing set of three best models.

42



Strategy Detail ∆mIoU ∆stdIoU

Test-time Augmentation affine + hflip, 1 -0.0330 0.0178
Test-time Augmentation affine + hflip, 3, logical and -0.0290 0.0158
Test-time Augmentation affine + hflip, 3, major voting -0.0139 0.0053

Pseudo-Labeling 1288 pseudo data pairs -0.0060 0.0061

Table 4.5: Experiment results of some strategies: ∆mIoU means the difference between IoU score the
current method and that of the best model so far.

Figure 4.5: Some good predictions of the best model.

experiment, three augmentation are performed on a same image, with only the dif-
ference in how to inverted predicted masks are combined (and operation, majority
voting or averaging ). The results showed in Table 4.5 (here∆ in∆mIoU and∆stdIoU
means the signed difference in scores after applying the current method to the best
model HSVAW ) indicates that test-time augmentation does not work for this prob-
lem (at least on tried methods), as while it increases the computational cost (to three
times), there is still a degradation in model performance.

Pseudo Labeling

In this experiment, the best model setting so far (HSV space, Affine transformation-
Horizontal Flipping-Grid Distortion, Linknet with MobileNetV2 encoder and Upsam-
pling decoder) was used to give prediction on 1288 unannotated images. The pre-
dicted masks paired with the corresponding images created a new pseudo training
data. Adding them to the original dataset, there were in total 3197 training pairs, and
the model with above settings was trained from scratch on the new dataset. The re-
sult in Table 4.5 in this retrain procedure did not enhance the performance of the
model, showing that the pseudo labeling also did not work with the problem on cur-
rent dataset.

43



Figure 4.6: Some bad predictions of the best model.

Postprocessing ∆mIoU ∆stdIoU

Active contour model 0.0137 -0.0044
Active shape model -0.0288 0.0061

Table 4.6: Experiment results of postprocessing techniques.

4.4.6 Postprocessing

Table 4.6 shows experimental results when applied active contour model (ACM) and
active shape model (ASM) to the best model so far. The results show that while ACM
slightly improved the model’s performance, ASM produced a considerable degrada-
tion. Visualizing results from these two methods indicated that ACM refined noisy
and distorted segmentation boundaries in most cases, meanwhile, ASM failed to cap-
ture high complexity and variance of testing shapes, which led to poor fittings. Figure
4.7 shows a bad and a good prediction in each postprocessing method. Figure 4.7a
(left) represents a case where ACM fails, in which the boundary (on the left side of
the object) is over-smoothed; and the good case (right) comes from the refinement
of zigzag contour (on the lower right side). In terms of ASM, figure 4.7b on the left
shows a case when the fitted shape is too simple, which reduces the accuracy; and
the right figure shows a good case where the abnormal shape of model’s prediction is
improved to have a standard shape which is fitter to the groundtruth.

4.4.7 Inference time

As mentioned above, Linknet architecture was designed to minimize the number
of parameters needed in a segmentation architecture, and similarly, the Bottleneck
Residual Block in MobileNetV2 also was created to efficiently reduce the size of the
model while retaining the ability to produce accurate results. For those reasons, it is
not surprising that the proposed model is able to make a fast prediction, of average
20 ms per frame or 50 FPS (compared to 30 ms per frame when replacing Linknet by
Unet architecture) on a Tesla K80 GPU.

44



(a) ACM (b) ASM

Figure 4.7: Some results of active contour model and active shape model.

4.4.8 Ejection Fraction

The metric ∆E F in table 4.7 is defined as ∆E F = E Ft r ue − E Fp r e d , where E Ft r ue is
the EF value calculated by applying single-plane Simpson method on two frames
that have minimum and maximum LV areas in the groundtruth masks (computed
by counting white pixels) and E Fp r e d is the EF value calculated by the same method
of two prediction masks corresponding to the two groundtruth masks. I oUmi n and
I oUma x are Intersection-over-Union scores between the true masks and the predicted
masks of those min and max frames. There are a total of 12 pairs used to test, and the
results in table 4.8 revealed a relatively high average difference between expert EF
and model EF. It can be observed from the visualization of the best and the worst
result (figure 4.8b and 4.8a) that this high difference may result from the poor seg-
mentation of LV at the end-systolic phase, when there are ambiguities near the apex
of the heart. Additionally, this may be caused by the calculation error of the single-
plane Simpson method, which is relatively large when the LV shape is not similar to
an elliptical shape. This method is also highly dependent on how the vertical axis
and horizontal segments are drawn. In contrast, the best case shows that the seg-
mentation model can work with images of high quality and LV of good shape, with
approximately zero difference from the groundtruth.

To further backup above arguments, let’s take a look at the results of ID 1 and
10 (figure 4.8d and 4.8c respectively). While ID 1 has relatively high IoU scores on
both minimum and maximum frames, its ∆E F is pretty large (21%). This contradic-
tion is caused by the difference between two sets of horizontal segments with regards
to min frames and the slight distinction between two shapes in max frames. On the
other hand, in ID 10, the similarities between shapes and horizontal segments be-
tween the poorly segmented mask and the groundtruth gave a quite small ∆E F . In
conclusion, while the prediction of the segmentation model is an important factor in
the calculation of Ejection Fraction, there are many other tasks that must be achieved
in order to get a good EF result.

45



(a) ID 7.

(b) ID 11.

(c) ID 10.

(d) ID 1.

Figure 4.8: Visualization of some EF calculation results.

46



ID I oUmi n I oUma x E Ft r ue E Fp r e d ∆E F

1 0.9291 0.8322 40% 19% 21%
2 0.9016 0.9378 27% 20% 7%
3 0.8534 0.7688 59% 45% 14%
4 0.7856 0.8400 69% 65% 4%
5 0.7840 0.7948 44% 14% 30%
6 0.8515 0.8450 57% 33% 24%
7 0.7513 0.8409 60% 27% 33%
8 0.8742 0.8799 39% 32% 7%
9 0.9018 0.9074 47% 42% 5%

10 0.6609 0.8280 66% 60% 6%
11 0.8951 0.9468 41% 41% 0%
12 0.7955 0.8893 55% 35% 20%

Table 4.7: Experiment results of EF calculation.

I oUmi n I oUma x ∆E F

0.8320 ± 0.0749 0.8592 ± 0.0519 14 ± 10%

Table 4.8: Statistics of EF calculation (mean ± std).

47



Chapter 5

Conclusions

This thesis explored a deep learning approach to tackle the problem of left ventri-
cle segmentation. Experiments cover a wide range of methods in training and mak-
ing inference on a deep learning model, from preprocessing data (e.g. color space
conversion), artificially generating new data (data augmentation) to picking a suit-
able loss function. Due to the limitation of computational power, experiments were
carried out phase by phase, where each phase used the best experimental settings
from the previous phase. The results suggested that Linknet with encoders of Bot-
tleneck Residual Blocks and upsampling-type decoders, training on HSV -converted
images with weighted BCE Jaccard loss and using heavy data augmentation such as
affine transformation and grid distortion and active contour model as postprocessing
method is the best pipeline for the current data set, with mIoU score of 89.42%. While
some methods boost model performance, such as data augmentation and weighted
loss function, postprocessing methods such as pseudo-labeling, test-time augmen-
tation, and active shape model have shown some degradation in model accuracy. In
terms of EF measurements, the model is able to give an acceptable result on high-
quality images with only 2% of error. The model from this best pipeline, which is able
to give accurate segmentation result within a reasonable time, have already been de-
ployed in a mobile application of automatically EF calculation.

Although the current model can produce good results on average, there are
cases where the images suffer from heavy environmental noises, have low contrast
or contain many ambiguities, leading to poor and unsatisfactory prediction outputs.
To tackle the above problems, some future trials may include:

• Getting more data As data is the key in any deep learning techniques, get-
ting more data is the simplest way to improve a DL-based model. Since the
current data set is only annotated by a single expert, obtaining data labeled by
different experts can encourage DL model to learn to be invariant to inter- and
intra-variability between doctors and make the model more flexible when giv-
ing predictions of new images under different environments.

• Trying new architectures Beside Unet-like architectures, there are various
network designs that can be put into trials, such as FPN and PSPNet or instance

48



segmentation architecture like Mask-RCNN. Though it has been argued that
the LV segmentation problem will be better tackled as a semantic segmentation
problem, it is worthwhile to try new methods.

• Training view-specific models As images from the same view in TTE have
similar shapes and characteristic features, training model on the data belong
to the same view will result in a specialized model to this specific view, and
combine those model can boost the result overall.

• Adopting more advanced shape modeling methods More complex shape
systems can be used to model the diversity of shapes in data set, thus making
postprocessing a truly refinement step to improve poorly segmented images.

49



Appendix A

Statistical Shape Analysis

A.1 Shapes and Landmarks

From [8], shape is all the geometrical information that remains when location, scale
and rotational effects are filtered out from an object. We can describe a shape by
points on the contour. This set of points is called landmarks, which have the fol-
lowing definition [8]: a landmark is a point of correspondence on each object that
matches between and within populations.

A.2 Shape Alignment - Procrustes Analysis

A simple iterative approach is given in [4] as follows:

• Translate each example so that its center of gravity is at the origin.

• Fix one shape S 1 and scale so that ||S 1||= 1.

• Align all the other shapes with the current estimate of the mean shape. To align
two shape S 1 and S j , each centered on the origin, we choose a scale s j and a
rotation θ j that minimizes ||Ts j ,θ j (S j )−S 1)||2, which is the sum of square distances
between landmarks of the two shapes. s j and θ j can be computed as follows:

a j =
z j z 1

||z j ||2
(A.1)

b j =
n
∑

i=1

x j
i y 1

i − x 1
i y j

i

||z j ||2
(A.2)

s j =
p

(a j )2+ (b j )2 (A.3)

θ j = tan−1(
b j

a j
) (A.4)

50



Then the transformation is defined by the transformation matrix M :

M =

�

s j cosθ j s j sinθ j

−s j sinθ j s j cosθ j

�

(A.5)

and the transformation operation Ts j ,θ j (S j ) is defined as:

Ts j ,θ j (S j ) = S j M =













x j
1 y j

1

x j
2 y j

2

...
...

x j
n y j

n













�

s j cosθ j s j sinθ j

−s j sinθ j s j cosθ j

�

(A.6)

A.3 Shape Modeling - Principal Component Analysis

Given the data of shapes S i represented by a vector xi , PCA aims to find a lower-
dimensional linear space to orthogonally projects the data onto, such that the vari-
ance of the projected data is maximized. Step-by-step procedure of modeling shapes
by PCA is given as follows:

1. Compute the mean of the shapes:

x=
1

s

s
∑

1

xi (A.7)

2. Compute the covariance of the shapes:

S=
1

s −1

s
∑

i=1

(xi −x)((xi −x)T (A.8)

3. Compute the eigenvectors vi and corresponding eigenvalues λi of S (λi is sorted
in an decreasing order).

4. For the pre-specified p %, Choose the first k largest eigenvalues that retain p %
of total variance:

t
∑

i=1

λi ≥
p

100

s
∑

i=1

λi (A.9)

51



Appendix B

Ejection Fraction Calculation using
Simpson’s Rule

First, three pivots point in the left ventricle boundary are marked (manually or using
Deep Learning approaches such as CNN for Object Detection). Then, a vertical axis is
computed by connecting to the tipping point to the midpoint of the bottom segment,
and 20 horizontal segments are drawn along the vertical axis, equally distributed (fig-
ure B.1). If the image from A2C and A4C view are available, we can approximately
calculate the volume of LV by Modified Simple’s Rule using the following formula:

V =
π

4

20
∑

i=1

ai bi

L

20
(B.1)

where ai is the length of i -th horizontal segment in A2C, bi is the length of i -th hori-
zontal segment in A4C and L is the length of vertical axis in both images (after being
scaled for consistency).

If we have one view of LV, the below formula can be used:

V = 0.85
A2

L
(B.2)

Figure B.1: Simpson rule for calculating LV volume.

52



where A is the formula of the LV calculated by Simpson’s rule:

A =
L

3×20
(a1+a20+4a2+2a3+4a4+2a5+ · · ·+2a19) (B.3)

53



Bibliography

[1] P. Gueret, S. Meerbaum, H. L. Wyatt, T. Uchiyama, T. W. Lang, and E. Corday,
“Two-dimensional echocardiographic quantitation of left ventricular volumes
and ejection fraction. Importance of accounting for dyssynergy in short-axis
reconstruction models.,” Circulation, vol. 62, no. 6, pp. 1308–1318, Dec. 1980.

[2] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Inter-
national Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, Jan. 1988.

[3] T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active Shape Models-Their
Training and Application,” Computer Vision and Image Understanding, vol. 61,
no. 1, pp. 38–59, Jan. 1995.

[4] T. Cootes, E. Baldock, and J. G. And, “An introduction to active shape models,”
Image processing and analysis, pp. 223–248, 2000.

[5] N. J Alison and B. Djamal, “Ultrasound image segmentation: a survey.,” IEEE
Transactions on Medical Imaging, vol. 25, no. 8, pp. 987–1010, 2006.

[6] R. C. Gonzalez and R. E. Woods, Digital image processing. Prentice Hall, 2008,
p. 954.

[7] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks,” Workshop on Challenges in Representation
Learning, ICML, vol. 3, 2013.

[8] I. L. Dryden, “Shape Analysis,” in Wiley StatsRef: Statistics Reference Online,
Chichester, UK: John Wiley & Sons, Ltd, Sep. 2014.

[9] A. Norouzi, M. S. M. Rahim, A. Altameem, T. Saba, A. E. Rad, A. Rehman, and M.
Uddin, “Medical Image Segmentation Methods, Algorithms, and Applications,”
IETE Technical Review, vol. 31, no. 3, pp. 199–213, May 2014.

[10] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” Sep. 2014.

[11] J. Dai, K. He, and J. Sun, “BoxSup: Exploiting Bounding Boxes to Supervise Con-
volutional Networks for Semantic Segmentation,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision, 2015, pp. 1635–1643.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” Dec. 2015.

[13] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift,” Feb. 2015.

54



[14] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Seman-
tic Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pp. 3431–3440, 2015.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 9351, pp. 234–241, 2015.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, Going Deeper With Convolutions, 2015.

[17] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,”
Oct. 2016.

[18] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”
Mar. 2016.

[19] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. Garcia-
Rodriguez, “A Review on Deep Learning Techniques Applied to Semantic Seg-
mentation,” Apr. 2017.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications,” Apr. 2017.

[21] A. Klibisz, D. Rose, M. Eicholtz, J. Blundon, and S. Zakharenko, “Fast, Simple
Calcium Imaging Segmentation with Fully Convolutional Networks,” Deep Learn-
ing in Medical Image Analysis and Multimodal Learning for Clinical Decision
Support, pp. 285–293, 2017.

[22] C. I. Sánchez, M. Ghafoorian, T. Kooi, F. Ciompi, G. Litjens, B. E. Bejnordi, A. A. A.
Setio, J. A. van der Laak, and B. van Ginneken, “A survey on deep learning in
medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.

[23] E. Smistad, A. Ostvik, B. O. Haugen, and L. Lovstakken, “2D left ventricle seg-
mentation using deep learning,” IEEE International Ultrasonics Symposium,
IUS, 2017.

[24] A. Arafati and H. Jafarkhani, “Multi-label 4-chamber segmentation of echocar-
diograms using Fully Convolutional Network,” 2018.

[25] A. Buslaev, A. Parinov Rickai Samara, E. Khvedchenya ODSai Odessa, V. I. Iglovikov,
and A. A. Kalinin, “Albumentations: fast and flexible image augmentations,”
Tech. Rep., 2018.

[26] A. Chaurasia and E. Culurciello, “LinkNet: Exploiting encoder representations
for efficient semantic segmentation,” 2017 IEEE Visual Communications and
Image Processing, VCIP 2017, pp. 1–4, 2018.

[27] J. Li, A. Raventos, A. Bhargava, T. Tagawa, and A. Gaidon, “Learning to Fuse
Things and Stuff,” Tech. Rep., 2018.

[28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:
Inverted Residuals and Linear Bottlenecks,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Jan. 2018.

55



[29] S. Seferbekov, V. Iglovikov, A. Buslaev, and A. Shvets, “Feature pyramid net-
work for multi-class land segmentation,” in IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, vol. 2018-June, 2018,
pp. 272–275.

[30] G. Wang, W. Li, S. Ourselin, and T. Vercauteren, “Automatic Brain Tumor Seg-
mentation using Convolutional Neural Networks with Test-Time Augmenta-
tion,” International MICCAI Brainlesion Workshop, pp. 61–72, 2018.

[31] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Vercauteren, “Aleatoric
uncertainty estimation with test-time augmentation for medical image seg-
mentation with convolutional neural networks,” Neurocomputing, vol. 338, pp. 34–
45, Apr. 2019.

[32] E. Smistad, “Fully automatic real-time ejection fraction and MAPSE measure-
ments in 2D echocardiography using deep neural networks,” 2018 IEEE Inter-
national Ultrasonics Symposium (IUS),

56


